Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T10:07:25.661Z Has data issue: false hasContentIssue false

Kinetics and Mechanism of the Copper-Catalyzed Etching of Silicon by F2

Published online by Cambridge University Press:  28 February 2011

N. Selamoglu
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
J. A. Mucha
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
D. L. Flamm
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
D. E. Ibbotson
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The copper catalyzed fluorination of silicon is first-order in [F2] and in [Cu]s until the coverage reaches ∼4 monolayers. Above ∼4 monolayers the reaction rate is zero order in copper, suggesting a limited number of catalytically active Cu/Si sites. Surface diffusion of copper leads to decrease in the etch rate as a function of time as well as feature size-dependent etch depths. The copper compounds CuF2, CuO, and copper silicides, Cu5 Si and Cu3 Si all catalyzed the F2-Si reaction which suggests that they are all converted to the same active species. The results can be explained by mechanisms involving copper fluorides or copper silicides as active intermediates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Selamoglu, N., Mucha, J. A., Flamm, D. L. and Ibbotson, D. E., J. Appl. Phys., 62, 1049 (1987).CrossRefGoogle Scholar
2. Selamoglu, N., Mucha, J. A., Flamm, D. L. and Ibbotson, D. E., submitted to J. Appl. Phys.Google Scholar
3. Hall, R. N. and Racette, J. H., J. Appl. Phys., 35, 379 (1964).Google Scholar
4. Weber, E. R., Appl. Phys., A 30, 1 (1983).Google Scholar
5. Mucha, J. A., Donnelly, V. M., Flamm, D. L. and Webb, L. M., J. Phys. Chem., 85, 3529 (1981).Google Scholar
6. Rochow, E. G., J. Amer. Chem. Soc., 67, 963 (1945).Google Scholar
7. Hurd, D. T. and Rochow, E. G., J. Amer. Chem. Soc., 67, 1057 (1945).Google Scholar
8. Voorhoeve, R. J. H. and Vlugter, J. C., J. Catalysis, 4, 123 (1965).Google Scholar
9. Voorhoeve, R. J. H. and Vlugter, J. C., J. Catalysis, 4, 220 (1965).Google Scholar
10. Frank, T. C. and Falconer, J. L., Appl. Surface Sci., 14, 359 (19821983).Google Scholar
11. Frank, T. C., Kester, K. B. and Falconer, J. L., J. Catalysis, 91, 44 (1985).Google Scholar
12. Sharma, A. K. and Gupta, S. K., J. Catalysis, 93, 68 (1985).Google Scholar
13. Gentle, T. M. and Owen, M. J., J. Catalysis, 103, 232 (1987).CrossRefGoogle Scholar
14. Ogryzlo, E. A., private communication.Google Scholar