Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T09:03:49.319Z Has data issue: false hasContentIssue false

Kinetics Of Dislocation Emission From Crack Tips And The Brittle To Ductile Transition Of Cleavage Fracture.

Published online by Cambridge University Press:  15 February 2011

A.S. Argon
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
G. Xu
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139 present address: Terra Tek, Inc, 420 Wakara Way, Salt Lake City, Utah 84108
M. Ortiz
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Several activation configurations of dislocation embryos emanating from cleavage crack tips at the verge of propagating have been analyzed in detail by the variational boundary integral method, as central elements of the rate controlling process of nucleation governed fracture transitions from brittle cleavage to tough forms, as in the case for BCC transition metals. The configurations include those on inclined planes, oblique planes and crack tip cleavage ledges. Surface ledge production resistance is found to have a very strong embrittling effect. Only nucleation on oblique planes near a free surface and at crack tip cleavage ledges are found to be energetically feasible to explain brittle-to-ductile transition temperatures in the experimentally observed ranges.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shank, M.E., Mech. Eng., 76, 23 (1954).Google Scholar
2. Orowan, E., in “Repts. Prog. Physics”, vol.12, p.185 (1949).Google Scholar
3. Parker, E.R., “Brittle Behavior of Engineering Structures”, J. Wiley, New York (1951).Google Scholar
4. Zener, C., in “Fracturing of Metals”, ASM, Metals Park Ohio, p.3 (1949).Google Scholar
5. Stroh, A.N., Proc. Roy. Soc., A223, 404, (1954).Google Scholar
6. Stroh, A.N., Proc. Roy. Soc., A 232, 548 (1955).Google Scholar
7. Hull, D., Acta Metall, 8, 11 (1960).Google Scholar
8. McMahon, C., “Micromechanisms of Cleavage Fracture in Polycrystalline Iron”, ScD Thesis, M.I.T., Cambridge, MA (1963).Google Scholar
9. Hahn, G.T., Averbach, B.L., Owen, W.S., and Cohen, M., in “Fracture”, edited by Averbach, B.L. et al, MIT Press, Cambridge, MA, 91 (1959).Google Scholar
10. Knott, J.F. and Cottrell, A.H., J. Iron Steel Inst., 201, 249 (1963).Google Scholar
11. Cohen, M. and Vukcevich, M.R., in “Physics of Strength and Plasticity”, edited by Argon, A.S., MIT Press, Cambridge, MA p.295 (1969).Google Scholar
12. Stroh, A.N., Adv. Phys., 6, 418 (1957).Google Scholar
13. Ritchie, R.O., Knott, J.F. and Rice, J.R., J. Mech. Phys. Solids, 21, 395 (1973).Google Scholar
14. Lin, T., Evans, A.G. and Ritchie, R.O., J. Mech. Phys. Solids, 34, 477 (1986).Google Scholar
15. Lin, T., Evans, A.G. and Ritchie, R.O., Met. Trans., 18A, 641 (1987).Google Scholar
16. Kelly, A., Tyson, W.R. and Cottrell, A.H., Phil. Mag., 15, 567 (1967).Google Scholar
17. Rice, J.R. and Thomson, R., Phil. Mag., 29, 73 (1974).Google Scholar
18. Burns, S.J. and Webb, W.W., J. Appl. Phys., 41, 2078 (1970).Google Scholar
19. Burns, S.J. and Webb, W.W., J. Appl. Phys., 41, 2086 (1970).Google Scholar
20. Gilman, J.J., Knudsen, C. and Walsh, W.P., J. Appl. Phys., 29, 600 (1958).Google Scholar
21. StJohn, C., Phil. Mag., 32, 1193 (1975).Google Scholar
22. Brede, M. and Haasen, P., Acta Metall, 36, 2003 (1988).Google Scholar
23. Hirsch, P.B., Samuels, J., and Rloberts, S.G., Proc. Roy. Soc., A 421, 25 (1989).Google Scholar
24. Hirsch, P.B., Roberts, S.G., Samuels, J. and Warner, P.D., in “Advances in Fracture Research” edited by Salama, K. et al, Pergamon, Oxford vol.1, p. 139 (1989).Google Scholar
25. George, A. and Michot, G., Mater. Sci. Engng., A 164, 118 (1993).Google Scholar
26. Argon, A.S., Acta Metall., 35, 185 (1987).Google Scholar
27. Cheung, K.S., Argon, A.S. and Yip, S., J. Appl. Phys., 69, 2088 (1991).Google Scholar
28. Schöck, G. and Püschl, W., Phil. Mag., A 64, 931 (1991).Google Scholar
29. Rice, J.R. and Beltz, G.E., J. Mech. Phys. Solids, 42, 333 (1994).Google Scholar
30. Xu, G., Argon, A.S. and Ortiz, M., Phil. Mag., 72, 415 (1995).Google Scholar
31. Sumino, K., in “Structure and Properties of Dislocations in Semiconductors”, edited by Roberts, S.G. et al, Inst. Phys., Bristol, England, p.245 (1989).Google Scholar
32. Maeda, K. and Yamashita, Y., same as Ref. 31, p. 269 (1989).Google Scholar
33. Yonenaga, I., Oriose, U. and Sumino, K., J. Mater. Res., 2, 252 (1987).Google Scholar
34. Yonenaga, I., Sumino, K., Izawa, G., Watanabe, H. and Matsui, J., J. Mater. Res., 4, 361 (1989).Google Scholar
35. Yonenaga, I., and Sumino, K., J. Mater. Res., 4, 355 (1989).Google Scholar
36. Bulatov, V.V., Yip, S., and Argon, A.S., Phil. Ma,., 72, 452 (1995).Google Scholar
37. Rice, J.R., Beltz, G.E., and Sun, Y., in “Topics in Fracture and Fatigue”, edited by Argon, A.S., Springer, Berlin, p. 1 (1992).Google Scholar
38. Peierls, R.E., Proc. Phys. Soc., A 52, 34 (1940).Google Scholar
39. Nabarro, F.R.N., Proc. Phys. Soc., A 59, 256 (1947).Google Scholar
40. Foreman, A.J., Jaswon, M.A., and Wood, J.K., Proc. Phys. Soc., A 64, 156 (1951).Google Scholar
41. Xu, G. and Ortiz, M., Intern. J. Num. Methods Engng., 36, 3675 (1993).Google Scholar
42. Chiao, Y-H, and Clarke, D.R., Acta Metall., 47, 203 (1989).Google Scholar
43. Samuels, J. and Robert, S.G..:, Proc. Roy. Soc., A421, 1 (1989).Google Scholar
44. Brede, M., Acta Metall., et Mater., 41, 211 (1993).Google Scholar
45. Rice, J.R., J. Mech. Phys. Solids, 40, 235 (1992).Google Scholar
46. Argon, A.S. and Deng, D., unpublished research, available on request.Google Scholar
47. Xu, G., Argon, A.S. and Ortiz, M., submitted to Phil. Mag.Google Scholar
48. Rose, J.H., Ferrante, J. and Smith, J.R., Phys. Rev. Letters., 47, 675 (1981).Google Scholar
49. Sun, Y., Beltz, G.E. and Rice, J.R., Mater. Sci. Engng., A 170, 67 (1993).Google Scholar
50. Cotterell, B. and Rice, J.R., Intern. J. Fract., 16, 155 (1980).Google Scholar
51. Kaxiras, E. and Juan, Y., private communication, to be published.Google Scholar
52. Zhou, S.J. and Thomson, R., J. Mater. Res., 6, 639 (1991).Google Scholar
53. McClintock, F.A. and Argon, A.S.Mechanical Behavior of Material”, Addison Wesley, Reading MA (1966).Google Scholar
54. Freund, L.B. and Hutchinson, J.W., J. Mech.Phys.Solids, 33, 169 (1985).Google Scholar
55. Khanta, M., Pope, D.P. and Vitek, V., Phys. Rev. Letters, 73, 684 (1994).Google Scholar
56. Khanta, M., Pope, D.P. and Vitek, V., Scripta Metall et Mater., 31, 1349 (1994).Google Scholar