Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T08:51:27.442Z Has data issue: false hasContentIssue false

Kinetics of the SRO-LRO Transformation in NI4MO

Published online by Cambridge University Press:  21 February 2011

E. E. Stansbury*
Affiliation:
Dept. of Chem., Met. and Poly. Engr. University of Tennessee Knoxville, TN 37996
Get access

Abstract

The isothermal time-temperature dependence of the transformation from SRO to LRO as measured by resistivity changes is given. Problems of defining an initial state from which the transformation occurs are reviewed with emphasis on the microdomain structure from which the LRO structure develops. Questions of homogeneous transformation relative to heterogeneous transformation by clear nucleation and growth are addressed in terms of experimental evidence and theoretical predictions. Strong evidence for a nucleation and growth mechanism, at least above 750° C, is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lei, T. S., Ph.D. Dissertation, University of Tennessee., (1979).Google Scholar
2. Van Tendeloo, G., Mater. Sci. Eng. 26, 209220 (1976).Google Scholar
3. Saburi, T., Komatsu, K. and Nenno, S., Phil. Mag. 20, 10911094 (1969).Google Scholar
4. Okamoto, P. R. and Thomas, G., Acta Met. 19, 825 (1971).Google Scholar
5. Ruedl, E., Delavignette, P. and Amelinckx, S., Mat. Res. Bull. 2, 10451054 (1967).Google Scholar
6. LeFevre, B. G., Guy, A. G. and Gould, R. W., Met. Trans. 242, 788 (1968).Google Scholar
7. Saburi, T., Komatsu, K., Yamamoto, M., Nenno, S. and Mizutani, Y., Trans. AIME 245, 23482349 (1969).Google Scholar
8. Das, S. K., Okamoto, P. R., Fischer, P. M. J. and Thomas, G., Acta Met. 21, 913 (1973).Google Scholar
9. Tawancy, H. M., Scripta Met. 18, 343346 (1984).Google Scholar
10. Spruiell, J. E. and Stansbury, E. E., J. Phys. Chem. Sol. 26, 811 (1965).CrossRefGoogle Scholar
11. Ruedl, E., Delavignette, P. and Amelinckx, S., Phys. Stat. Sol. 28, 305 (1968).Google Scholar
12. Snyder, W. B. and Brooks, C. R., In Kear, B. H., Sims, C. T., Stoloff, N. S. and Westbrook, J. H. (eds): Ordered Alloys – Structural Applications and Physical Metallurgy. Lake George, NY, Claitor's, pp. 275296, (1970).Google Scholar
13. Banerjee, S., Urban, K. and Wilkens, M., Acta Met. 32, 299311 (1984).Google Scholar
14. Vasudevan, K., The Effect of 0–4 Weight Percent Chromium on Transformations of Alpha Phase Ni-Mo-Cr Alloys with Nickel: Molybdenum Ratio Equal to 4:1. Knoxville, TN: M.S. Thesis Univ. of Tenn. (1982).Google Scholar
15. Charkravarti, B., Starke, E. A. and LeFevre, B. G., Jnl. Mats. Sci. 5, 394 (1970).Google Scholar
16. Chevalier, J. P. and Stobbs, W. M., Acta Met. 27, 11971217 (1979).CrossRefGoogle Scholar
17. Yamamoto, M., Nenno, S., Futamoto, M. and Nakanura, S., Japanese Jnl. Of Applied Physics 11, 437444 (1972).Google Scholar
18. Okamoto, P. R. and Thomas, G., Mat. Res. Bull. 6, 4550 (1971).Google Scholar
19. Okamoto, P. and Thomas, G., In Kear, B. H., Sims, C. T., Stoloff, N. S. and Westbrook, J. H. (eds): Ordered Alloys - Structural Applications and Physical Metallurgy. Baton Rouge, Claitor's, pp. 297299, (1970).Google Scholar
20. Chandrasekharaiah, M. N., Ranganathan, S., Okamoto, P. R. and Thomas, G., Mat. Res. Bull. 7, 1318 (1972).Google Scholar
21. Das, S. K., Okamoto, P. R., Fischer, P. M. J. and Thomas, G., Acta Met. 21, 913 (1973).Google Scholar
22. Das, S. K. and Thomas, G., Phys. Stat. Sol. 21, 177 (1974).Google Scholar
23. Sinclair, R., Gelles, D. S. and Thomas, G., Proc. Annu. Meet. Electron Microsc. Soc. Amer. 34, 600601 (1976).CrossRefGoogle Scholar
24. Thomas, G. and Sinclair, R., Acta Met. 25, 231 (1977).Google Scholar
25. Thomas, G. and Goringe, M. J., Transmission Electron Microscopy of Materials. New York: John Wiley (1979).Google Scholar
26. Chakravarti, B., Starke, E. A., Sparks, C. J. and Williams, R. O., J. Phys. Chem. Sol. 35, 13171326 (1974).Google Scholar
27. De Ridder, R., Van Tendeloo, G. and Amelinckx, S., Acta Cryst. 32, 216224 (1976).CrossRefGoogle Scholar
28. Chevalier, J. P. A. A. and Stobbs, W. M., Acta Met. 24, 535 (1976).Google Scholar
29. Stobbs, W. M. and Chevalier, J. P. A. A., Acta Met. 26, 233 (1978).Google Scholar
30. Nesbit, L. A. and Laughlin, D. E., Acta Met. 26, 815 (1978).Google Scholar
31. Lei, T. S., Vasudevan, K. and Stansbury, E. E., Proceedings:Hightemperature Ordered Intermetallic Alloys. Pittsburgh: Materials Research Society (1984).Google Scholar
32. Landau, L. D. and Lifshitz, E. M., Statistical Physics. Reading, MA: Addison-Wesley (1958).Google Scholar
33. De Fontaine, D., Acta Met. 23, 553571 (1975).Google Scholar
34. Clapp, P. C. and Moss, S. C., Phys. Rev. 142, 418 (1966).Google Scholar
35. Clapp, P. C. and Moss, S. C., Phys. Rev. 171, 764 (1968).Google Scholar
36. Clapp, P. C. and Moss, S. C., Phys. Rev. 171, 754 (1968).Google Scholar
37. Khachaturyan, A. G., Prog. Mat. Sci. 22, 1150 (1978).Google Scholar