Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T10:09:37.675Z Has data issue: false hasContentIssue false

Label Free DNA Detection Using Large Area Graphene-Based FET Biosensors

Published online by Cambridge University Press:  20 May 2011

Shirui Guo
Affiliation:
Department of Chemistry, University of California, Riverside, 92521
Jian Lin
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, 92521
Miroslav Penchev
Affiliation:
Department of Electrical Engineering, University of California, Riverside, 92521
Emre Yangel
Affiliation:
Department of Electrical Engineering, University of California, Riverside, 92521
Mihrimah Ozkan
Affiliation:
Department of Chemistry, University of California, Riverside, 92521 Department of Electrical Engineering, University of California, Riverside, 92521
Cengiz S. Ozkan
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, 92521
Get access

Abstract

This work describes the fabrication of highly sensitive graphene-based field effect transistor (FET) biosensors in a cost-effective way and its application in label-free DNA detection. CVD graphene was used to achieve mass production of FET device through photolithography method. Non-covalent functionalization of graphene with 1-Pyrenebutanoic acid succinimidyl ester ensures the high conductivity and sensitivity of the device. The present device could reach the low detection limit as low as 3*10-9 M.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Hahm, J.; Lieber, C. M. Nano Lett. 2004, 4, 51.Google Scholar
(2) Curreli, M.; Zhang, R.; Ishikawa, F. N.; Chang, H. K.; Cote, R. J.; Zhou, C.; Thompson, M. E. Ieee Transactions on Nanotechnology. 2008, 7, 651.10.1109/TNANO.2008.2006165Google Scholar
(3) Martinez, M. T.; Tseng, Y. C.; Ormategui, N.; Loinaz, I.; Eritja, R.; Bokor, J. Nano Lett. 2009, 9, 530.10.1021/nl8025604Google Scholar
(4) Maehashi, K.; Matsumoto, K. Sensors. 2009, 9, 5368.Google Scholar
(5) Wang, X.; Ozkan, C. S. Nano Lett. 2008, 8, 398.10.1021/nl071180eGoogle Scholar
(6) Yamamoto, Y.; Maehashi, K.; Ohno, Y.; Matsumoto, K. Sensors and Materials. 2009, 21, 351.Google Scholar
(7) Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Nature Nanotechnology. 2008, 3, 206.10.1038/nnano.2008.58Google Scholar
(8) Echtermeyer, T. J.; Lemme, M. C.; Baus, M.; Szafranek, B. N.; Geim, A. K.; Kurz, H. Ieee Electron Device Letters. 2008, 29, 952.10.1109/LED.2008.2001179Google Scholar
(9) Liang, X.; Fu, Z.; Chou, S. Y. Nano Lett. 2007, 7, 3840.10.1021/nl072566sGoogle Scholar
(10) Chen, Z.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Physica E: Low-dimensional Systems and Nanostructures. 2007, 40, 228.10.1016/j.physe.2007.06.020Google Scholar
(11) Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Science. 2008, 319, 1229.Google Scholar
(12) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nature Materials. 2007, 6, 652.10.1038/nmat1967Google Scholar
(13) Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Nano Letters. 2009, 9, 3318.10.1021/nl901596mGoogle Scholar
(14) Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science. 2009, 324, 1312.Google Scholar
(15) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature. 2009, 457, 706.10.1038/nature07719Google Scholar
(16) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2008, 9, 30.10.1021/nl801827vGoogle Scholar
(17) Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Appl. Phys. Lett. 2008, 93, 113103.10.1063/1.2982585Google Scholar
(18) Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Journal of Physical Chemistry C. 2008, 112, 17741.10.1021/jp807380sGoogle Scholar
(19) Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Nano Lett. 2007, 7, 1643.Google Scholar
(20) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838.10.1021/ja010172bGoogle Scholar
(21) Lin, J.; D. T., K. A.; Guanxiong, Liu; Xiaoye, Jing; Zhong, Yan; Rong, Li; Mihri, Ozkan; Roger, K. Lake; Alexander, A. Balandin; Ozkan, C. S. Small. 2010.Google Scholar
(22) Dong, X. C.; Shi, Y.; Huang, W.; Chen, P.; Li, L. J. Adv. Mater. 2010, 22, 1.Google Scholar
(23) Wehling, T. O.; Lichtenstein, A. I.; Katsnelson, M. I. Appl. Phys. Lett. 2008, 93, 202110.Google Scholar
(24) Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Nano Lett. 2008, 8, 173.Google Scholar
(25) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y. L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563.10.1021/ja038702mGoogle Scholar