Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:50:42.877Z Has data issue: false hasContentIssue false

Label-Free Rapid Detection of Pathogens with Antimicrobial Peptide Assisted Impedance Spectrometry

Published online by Cambridge University Press:  17 June 2015

Keren Jiang
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada.
Hashem Etayash
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada. Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
Sarfuddin Azmi
Affiliation:
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
Garima Thakur
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada.
Selvaraj Naicker
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada.
Kamaljit Kaur
Affiliation:
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
Thomas Thundat
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada.
Get access

Abstract

An urgent need exist for developing handheld devices for rapid, sensitive, and specific detection method for pathogens. Here we demonstrate a rapid detection method for Gram-positive and Gram-negative bacteria using an impedance sensor array functionalized with antimicrobial peptides (AMPs). This impedance sensor screens pathogens in real-time and has comparable sensitivity with current detection methods like polymerase chain reaction (PCR) and immunoassay. Functionalized electrodes in array selectively bind to the corresponding bacteria strains, resulting in variations in the impedance modulus. Impedance variation is used to detect incubated bacterial cell concentration with a resolution of 1 cell µL-1. The dynamic range of detection for both Gram-positive and Gram-negative bacteria is found to be 103-106 cfu mL-1. Micropatterned electrodes modified with AMPs in an impedimetric array offer an excellent platform for rapid and selective detection of pathogens in contaminated water and food products.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

“Estimating Foodborne Illness: An Overview” [Online]. Available: http://www.cdc.gov/foodborneburden/estimates-overview.html. [Updated: 17April2014].Google Scholar
Naravaneni, R. and Jamil, K., J. Med. Microbiol., 2005, 54, 5154.CrossRefGoogle Scholar
Heo, J. and Hua, S. Z., Sensors, 2009, 9, 44834502.CrossRefGoogle Scholar
Slinker, J. D., Muren, N. B., Gorodetsky, A. A. and Barton, J. K., J. Am. Chem. Soc., 2010, 132, 27692774.CrossRefGoogle Scholar
Arora, P., Sindhu, A., Dilbaghi, N. and Chaudhury, A., Biosens. Bioelectron., 2011, 28, 112.CrossRefGoogle Scholar
Johnson, R. P., Durham, R. J., Johnson, S. T., MacDonald, L. A., Jeffrey, S. R. and Butman, B. T., Appl. Environ. Microbiol., 1995, 61, 386388.Google Scholar
Zasloff, M., Nature, 2002, 415, 389395.CrossRefGoogle Scholar
Gérard, F., Pradel, N. and Wu, L.-F., J. Bacteriol., 2005, 187, 19451950.CrossRefGoogle Scholar
Varshney, M., Li, Y., Srinivasan, B. and Tung, S., Sens. Actuators B Chem., 2007, 128, 99107.CrossRefGoogle Scholar
Varshney, M. and Li, Y., Biosens. Bioelectron., 2007, 22, 24082414.CrossRefGoogle Scholar
Etayash, H., Jiang, K., Thundat, T. and Kaur, K., Anal. Chem., 2014, 86, 16931700.CrossRefGoogle Scholar
Bodapati, K. C., Soudy, R., Etayash, H., Stiles, M. and Kaur, K., Bioorg. Med. Chem., 2013, 21, 37153722.CrossRefGoogle Scholar
Waters, V. L. and Crosa, J. H., Microbiol. Rev., 1991, 55, 437450.Google Scholar
Ghindilis, A. L., Schwarzkopf, K., Messing, D., Sezan, I., Schuele, P., Zhan, C., Smith, M., Simon, H. and Evans, D., ECS Trans., 2010, 33, 5968.CrossRefGoogle Scholar
Ghindilis, A. L., Smith, M. W., Messing, D. S., Haynes, V. N., Middleton, G. B., Schwarzkopf, K. R., Campbell, C. E., Zhan, C., Ulrich, B., Frasier, M. J., Schuele, P. J., Evans, D. R., Sezan, I., Hartzell, J. W. and Simon, H. M., Biosens. Bioelectron., 2012, 35, 8793.CrossRefGoogle Scholar
Mannoor, M. S., Zhang, S., Link, A. J. and McAlpine, M. C., Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 1920719212.CrossRefGoogle Scholar