Published online by Cambridge University Press: 10 February 2011
An advanced oxide MOCVD tool and processes have been developed to deposit large area PbZr1−xTixO3 (PZT) thin films on 6” Si and Pt/Ti/SiO2/Si substrates. The experimental results show the advanced oxide MOCVD tool can achieve the growth of PZT thin films with thickness uniformity of 2% and composition uniformity better that 3% on both 6” Si and Pt/Ti/SiO,/Si wafers at high deposition rates. X-ray patterns showed a single PZT perovskite phase, and AFM showed homogeneous microstructure and low surface roughness. Typically, 300 nm thick PZT films with a grain size about 0.3 μm have Pr greater than 20 - 30 μC/cm2 at 5V, a dielectric constant around 1000, low coercive field (Ec 50 - 70 kV/cm), and fatigue rate (the normalized polarization is about 0.6 after 1010 cycles at 5 V), and leakage current of 2 - 6×lO−7 A/cm2 at 150 kV/cm and room temperature on Pt electrodes. In addition, the effects of reactor design and process conditions on the thickness and composition uniformity, as well as the m i ero structure and properties were also investigated.