Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:44:39.175Z Has data issue: false hasContentIssue false

Large Scale and Large Area Amorphous Silicon Thin Film Transistor Arrays for Active Matrix Liquid Crystal Displays

Published online by Cambridge University Press:  26 February 2011

H. Miki
Affiliation:
Materials & Electronic Devices Laboratory, Mitsubishi Electric Corp. 1–1, Tsukaguchi-Honmachi 8-chome, Amagasaki, 661, Japan
S. Kawamoto
Affiliation:
Materials & Electronic Devices Laboratory, Mitsubishi Electric Corp. 1–1, Tsukaguchi-Honmachi 8-chome, Amagasaki, 661, Japan
T. Horikawa
Affiliation:
Materials & Electronic Devices Laboratory, Mitsubishi Electric Corp. 1–1, Tsukaguchi-Honmachi 8-chome, Amagasaki, 661, Japan
T. Maejima
Affiliation:
Materials & Electronic Devices Laboratory, Mitsubishi Electric Corp. 1–1, Tsukaguchi-Honmachi 8-chome, Amagasaki, 661, Japan
H. Sakamoto
Affiliation:
Materials & Electronic Devices Laboratory, Mitsubishi Electric Corp. 1–1, Tsukaguchi-Honmachi 8-chome, Amagasaki, 661, Japan
M. Hayama
Affiliation:
Materials & Electronic Devices Laboratory, Mitsubishi Electric Corp. 1–1, Tsukaguchi-Honmachi 8-chome, Amagasaki, 661, Japan
Y. Onishi
Affiliation:
Materials & Electronic Devices Laboratory, Mitsubishi Electric Corp. 1–1, Tsukaguchi-Honmachi 8-chome, Amagasaki, 661, Japan
Get access

Abstract

The preparation and properties of hydrogenated amorphous silicon thin film transistor arrays for active matrix liquid crystal displays are reported. The effect of amorphous silicon film preparation conditions on the field effect mobility of thin film transistors was investigated. The dry etching rate of silicon nitride film was studied.The thin film transistor arrays have 408 ˜ 640 transistors on the first version and 450 ˜ 640 ˜ 3 transistors on the second version. The liquid crystal panel fabricated using the first version arrays showed good characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hotta, S., Nagata, S., Miyata, Y., Yokoyana, K., Adachi, K., Chikamura, T., Yoshiyana, M., Nishikawa, A. and Kawasaki, K., SID Symp. Digest, 1986 296Google Scholar
2. Spear, W.E., LeComber, P.G., Kinmond, S. and Brodsky, M.H., Appl. Phys. Lett. 28, 105 (1976)Google Scholar
3. Shank, H., Frang, C.J., Lay, L., Cardona, M., Demand, F.J. and Kalbitzer, S., Phys. Status Solidi B 100, 43 (1980)Google Scholar
4. Kobayashi, K., Hayama, M., Kawamoto, S., and Miki, H., Jpn. J. Appl. Phys. 26, 202 (1987)Google Scholar
5. Dersh, H., Stuke, J. and Beicher, J., Phys. Status Solidi B 105, 265 (1981)Google Scholar
6. Knights, J.C., Lucovsky, G. and Nemanich, R.J., J. Non-Cryst. Solids 32, 393 (1979)Google Scholar
7. Shimizu, T., Nakazawa, K., Kumeda, M. and Ueda, S., Jpn. J. Appl.Phys. 21, L351 (1982)Google Scholar
8. Shimizu, T., J. Non-Cryst. Solids 59 & 60, 117 (1983)Google Scholar
9. Kojima, Y., Narikawa, , Nojima, H., Ehara, S., Sharp Tech. Rep. (Japanese) 34, 39 (1986)Google Scholar
10. Brodsky, M.H., Cardona, M., and Cuono, J.J., Phys. Rev. B 29, 3556 (1977)Google Scholar
11. Taft, E.A., J. Electrochem. Soc. 118, 1341 (1971)Google Scholar
12. Lanford, W.A. and Rand, M J, J, Appl. Phys. 49, 2473 (1978)Google Scholar
13. Kurahashi, , Proc. 6th Intl. Display Res. Conf. 1983 420Google Scholar