Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T10:13:10.576Z Has data issue: false hasContentIssue false

Laser Diagnostics of Semiconductor Processing Systems

Published online by Cambridge University Press:  21 February 2011

Joel A. Silver
Affiliation:
Aerodyne Research, Inc., 45 Manning Road, Billerica MA 01821
Get access

Abstract

Two processes of great importance in the semiconductor industry are vapor deposition and plasma etching. This paper presents a review of laser techniques for spectroscopic characterization of the gas phase species involved in these processes. Band strength and other spectroscopic data for selected molecules are used to give estimates of the detection sensitivity in vibrational and electronic bands. Preliminary results are given from work presently in progress in our laboratory on the detection of such species. The discussion includes examples of the application of these techniques to a number of laboratory deposition and etching devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wormhoudt, J., Stanton, A.C., and Silver, J.A., Proc. SPIE 452, 88 (1984)CrossRefGoogle Scholar
2. Herzberg, G., Spectra of Diatomic Molecules, Van Nostrand, New York, 1950.Google Scholar
3. Herzberg, G., Infrared and Raman Spectra, Van Nostrand, New York, 1945.Google Scholar
4. Nicholls, R.W., “Transition Probability Data for Molecules of Astro-physical Interest” in Ann. Rev. Astron. Astrophys. 1977, p. 197.CrossRefGoogle Scholar
5. Dumont, M.N. and Remy, F., Spec. Lett. 15, 699 (1982).CrossRefGoogle Scholar
6. Herzberg, G., Electronic Spectra of Polyatomic Molecules, Van Nostrand, New York, 1966.Google Scholar
7. Donnelly, V.M., Flamm, D.L., Dautremont-Smith, W.C., and Werder, D.J., J. Appl. Phys. 55, 242 (1984).CrossRefGoogle Scholar
8. Donnelly, V.M. and Flamm, D.L., Solid State Technol. (1981), p. 161.Google Scholar
9. Stanton, A.C., Wormhoudt, J.C., and Duff, J.W., in Spectral Line Shapes, Vol.2, Walter deGruyter, New York, 1983, p. 515.Google Scholar
10. Flamm, D.L., Donnelly, V.M., and Ibbotson, D.E., J. Vac. Sci. Technol. B 1, 23 (1982).CrossRefGoogle Scholar
11. Kushner, M.J., J. Appl. Phys. 53, 2923 (1982).CrossRefGoogle Scholar
12. d'Agostino, R., Cramarossa, F., deBenedictis, S., and Ferraro, G., J. Appl. Phys. 52, 1259 (1981).CrossRefGoogle Scholar
13. D'Agostino, R., Cramarossa, F., Colaprico, V., and d'Ettole, R., J. Appl. Phys. 54, 1284 (1983).CrossRefGoogle Scholar
14. Gottscho, R.A., Davis, G.P., and Burton, R.H., Plasma Chem. Plasma Processing 3, 193 (1983).CrossRefGoogle Scholar
15. Davies, P.B., Hamilton, P.A., Elliot, J.M., and Rice, M.J., J. Mol. Spec. 102, 193 (1983).CrossRefGoogle Scholar
16. Davies, P.B., Lewis-Bevan, W., and Russell, D.K., J. Chem. Phys. 75, 5602 (1981).CrossRefGoogle Scholar
17. Newton, J.H. and Person, W.B., J. Chem. Phys. 68, 2799 (1978).CrossRefGoogle Scholar
18. Khanna, V.M., Hauge, R., Curl, R.F., Jr., and Margrave, J.L., J. Chem. Phys. 47, 5031 (1967).CrossRefGoogle Scholar
19. Caldow, G.L., Deeley, C.M., Turner, P.H., and Mills, I.M., Chem. Phys. Lett. 82, 434 (1981).CrossRefGoogle Scholar
20. Khanna, V.M., Besenbruch, G., and Margrave, J.L., J. Chem. Phys. 46, 2310 (1967).CrossRefGoogle Scholar
21. Roth, R.M., Spears, K.G., and Wong, G., Appl. Phys. Lett. 45, 28 (1984).CrossRefGoogle Scholar
22. Perrin, J. and Delafosse, E., J. Phys. D. 13, 759 (1980).CrossRefGoogle Scholar
23. Yokoyama, S., Hirose, M., and Osaka, Y., Jap. J. Appl. Phys. 20, L117 (1981).CrossRefGoogle Scholar
24. Hirose, M., Hamasaki, T., Mishima, Y., Kurata, H., and Osaka, Y., in Tetrahedrally Bonded Amorphous Semiconductors, Ed. Street, R. A., Biegelsen, D.K., and Knights, J.C., AIP Conference Proceedings No. 73, 1981.Google Scholar
25. Knights, J.C., Schmitt, J.P.M., Perrin, J. and Guelachvili, G., J. Chem. Phys. 76, 3414 (1982).CrossRefGoogle Scholar
26. Chollet, P., Guelachvili, G., and Morillon, M., Bull. Soc. Chim. Belges 92, 512 (1983).Google Scholar
27. Schmitt, J.P.M., Gressier, P., Krishnan, M., deRosny, G. and Perrin, M., Chem. Phys. 84, 281 (1984).CrossRefGoogle Scholar
28. Bauer, W., Becker, K.H., Duren, R., Hubrich, C., and Meuser, R., Chem. Phys. Lett. 108, 560 (1984).CrossRefGoogle Scholar
29. Jasinski, J.M., Whittaker, E.A., Bjorklund, G.C., Dreyfus, R.W., Estes, R.D., and Walkup, R.E., Appl. Phys. Lett. 44, 1155 (1984).CrossRefGoogle Scholar
30. Inoue, G. and Suzuki, M., Chem. Phys. Lett. 105, 641 (1984).CrossRefGoogle Scholar
31. Patel, R.L., Stewart, G.W., Casleton, K., Gole, J.L., and Lombardi, J.R., Chem. Phys. 52, 461 (1980).CrossRefGoogle Scholar
32. Conner, C.P., Stewart, G.W., Lindsay, D.M., and Gole, J.L., J. Am. Chem. Soc. 99, 2540 (1977).CrossRefGoogle Scholar
33. DeJoseph, C.A., Jr., Garscadden, A., and Pond, D.R., Proc. Intl. Conf. on Lasers ‘82, STS Press, McLean VA, 1983, p. 738.Google Scholar
34. Cheney, R., Schadt, R., Anderson, R., and DeJoseph, C.A., Jr. “Infrared Measurements of Disilane Production from D.C. Discharge in Silane”, Paper HA-5 Presented at Thirty-Seventh Annual Gaseous Electronics Conference, 9-12 October 1984, Boulder, CO.Google Scholar
35. DeJoseph, C.A., Jr. and Pond, D.R., “Dissociation Rates of Silane in an R.F. Discharge by Tunable Diode Laser Absorption”, Paper HA-6, Presented at Thirty-Seventh Annual Gaseous Electronics Conference, 9-12 October 1984, Boulder, CO.Google Scholar
36. Reif, R., J. Vac. Sci. Technol. A 2, 429 (1984).CrossRefGoogle Scholar
37. Ho, P. and Breiland, W.G., Appl. Phys. Lett. 44, 51 (1984).CrossRefGoogle Scholar
38. Ho, P. and Breiland, W.G., Appl. Phys. Lett. 43, 125 (1983).CrossRefGoogle Scholar