Article contents
Laser Direct-Write of Embryonic Stem Cells and Cells Encapsulated in Alginate Beads for Engineered Biological Constructs
Published online by Cambridge University Press: 25 April 2012
Abstract
The ability to control the deposition of mouse embryonic stem cells (mESCs), and mESCs encapsulated in 200-μm diameter alginate microbeads, into customized patterns has recently been achieved using laser direct-write (LDW). Gelatin-based LDW was utilized to target and reproducibly deposit groups of cells directly onto receiving substrate surfaces. Live/dead staining for cell viability and immunocytochemistry for the pluripotency marker, Oct-4, indicated that transferred mESCs were viable following transfer, and maintained an important embryonic stem cell marker, respectively. LDW was further used to print mESCs encapsulated in hydrogel microbeads into customized patterns on a single-bead basis. Recent efforts have also achieved patterns of discrete co-cultures of mESCs and breast cancer cells in separate hydrogel microbeads. Altogether, we demonstrated the feasibility of LDW to print patterns of mESCs and mESC-microbeads for the biomimetic assembly of engineered cellular constructs and tissue models.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1418: Symposium LL/MM – Gels and Biomedical Materials , 2012 , mrsf11-1418-mm06-08
- Copyright
- Copyright © Materials Research Society 2012
References
- 1
- Cited by