Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:44:02.406Z Has data issue: false hasContentIssue false

Laser Induced Fluorescence and Optical Emission Studies of Fluorocarbon Plasmas

Published online by Cambridge University Press:  25 February 2011

J. P. Booth
Affiliation:
Physical Chemistry Laboratory, Oxford University, Oxford, U.K.
C. Hancock
Affiliation:
Physical Chemistry Laboratory, Oxford University, Oxford, U.K.
N. D. Perry
Affiliation:
Physical Chemistry Laboratory, Oxford University, Oxford, U.K.
D. C. W. Blaikleye
Affiliation:
Applied Chemistry Group, AERE Harwell, Oxfordshire, U.K.
J. A. Cairns
Affiliation:
Applied Chemistry Group, AERE Harwell, Oxfordshire, U.K.
R. Smailes
Affiliation:
Applied Chemistry Group, AERE Harwell, Oxfordshire, U.K.
Get access

Abstract

Laser induced fluorescence of CF2 has been observed in plasmas of CF4 and its mixtures with O2 and H2. Surface removal rates of the radical in pure CF4 were measured by observing the decay of the radical when the plasma is switched off. The reduction in CF2 concentration, and the increase in F atom concentrations (the latter measured by optical emission spectroscopy) on the addition of O2 is reproduced by a model of the plasma in which gas phase chemical reactions play a dominant role. The increase in CF2 concentration on the addition of H2 to a CF4 plasma is shown to be due to a reduction in the surface removal rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. d'Agostino, R., Cramarossa, F., De Benedictis, S. and Ferraro, G., J. Appl. Phys. 52 1259 (1981).Google Scholar
2. Pang, S. and Brueck, S.R.J., Mater. Res. Soc. Symp. Proc. 17 161 (1983).Google Scholar
3. Marcoux, P.J. and Foo, P.D., Solid State Techn. 24 115 (1981).Google Scholar
4. Hargis, P.J. and Kushner, M.J., Appl. Phys. Lett. 40 779 (1982).Google Scholar
5. Ninomiya, K., Suzuki, K., Nishimatsu, S. and Okada, O., J. Vac. Sci. Technol. A4 1791 (1986).Google Scholar
6. Booth, J.P., Hancock, G. and Perry, N.D., Appl. Phys. Lett. 50 318 (1987).Google Scholar
7. Thoman, J. W. Jr Suzuki, K., Kable, S.H. and Steinfeld, J.I., J. Appl. Phys. 60 2775 (1986).Google Scholar
8. van Roosmalen, A.J., Vacuum 34 429 (1984).Google Scholar
9. Matsumi, Y., Toyoda, S., Hayashi, T., Miyaruma, M., Yoshikawa, H. and Komiya, S., J. Appl. Phys. 80 4102 (1986).Google Scholar
10. Plumb, I.C. and Ryan, K.R., Plasma Chem. Plasm Proc. 6 205 (1986).Google Scholar
11. Ryan, K.R. and Plumb, I.C., Plasma Chem. Plasma Proc. 4 271 (1984).Google Scholar
12. Hancock, G., Harrison, P.D. and MacRobert, A.J., J. Chem. Soc. Faraday Trans. 2 82 647 (1986).Google Scholar
13. Plumb, I.C. and Ryan, K.R., Plasma Chem. Plasma Proc. 6 11 (1986).Google Scholar
14. Coburn, J.W. and Chen, M., J. Appl. Phys. 51 3134 (1980).Google Scholar