Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:35:41.676Z Has data issue: false hasContentIssue false

Laser Induced Oxidation Effects in Bismuth Thin Films

Published online by Cambridge University Press:  07 January 2013

Marco A. Zepeda
Affiliation:
Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, México DF Departamento de Física, Universidad Autónoma Metropolitana Unidad Iztapalapa, México DF
Michel Picquart
Affiliation:
Departamento de Física, Universidad Autónoma Metropolitana Unidad Iztapalapa, México DF
Emmanuel Haro-Poniatowski*
Affiliation:
Departamento de Física, Universidad Autónoma Metropolitana Unidad Iztapalapa, México DF
*
*Corresponding author: haro@xanum.uam.mx
Get access

Abstract

The Laser induced oxidation process of bismuth was investigated using Raman spectroscopy. Upon laser irradiation (λ = 532 nm) pure Bismuth was transformed gradually into Bi2O3. Raman spectra of the samples showed the characteristics peaks for pure Bi located at 71 cm-1 and 96 cm-1. The oxidation process was monitored by Raman spectra with four additional bands located at about 127 cm-1, 241 cm-1, 313 cm-1 and 455 cm-1. Maintaining constant the exposure time of irradiation, the intensity of these bands depended on laser irradiation power. The presence of Bi2O3 in the sample was confirmed through by energy dispersion spectroscopy (EDS).

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cohen, M.H., Falicov, L.M. and Golin, S., IBM J. Res. Devel. 8, 215 (1964).10.1147/rd.83.0215CrossRefGoogle Scholar
Haro-Poniatowski, E., Jouanne, M., Morhange, J.F., Kanehisa, M., Serna, R. and Afonso, C.N., Phys. Rev. B 60, 10080 (1999).10.1103/PhysRevB.60.10080CrossRefGoogle Scholar
Salazar-Pérez, A.J., Camacho-López, M.A., Morales-Luckie, R.A., Sánchez-Mendieta, V., Ureña-Núñez, F. and Arenas-Alatorre, J., Superficies y Vacío 18(3), 4 (2005).Google Scholar
Hardcastle, F.D. and Wachs, I.E., J. Solid State Chem. 97, 319 (1992).10.1016/0022-4596(92)90040-3CrossRefGoogle Scholar
Schröder, F., Bagdassarov, N., Ritter, F. and Bayarjargal, L., Phase Transitions 83, 311 (2010).10.1080/01411591003795290CrossRefGoogle Scholar
Huang, C.C., Wen, T.Y. and Fung, K.Z., Mat. Res. Bull. 41, 110 (2006).10.1016/j.materresbull.2005.07.043CrossRefGoogle Scholar
Kumari, L., Lin, J.H. and Ma, Y.R, J. Phys. D: Appl. Phys 41, 025405–1 (2008).10.1088/0022-3727/41/2/025405CrossRefGoogle Scholar