Published online by Cambridge University Press: 28 February 2011
An Ar+ ion laser has been used for direct writing of GaAs and GaAsP single crystal films on thermally biased GaAs substrates. Multiple scanning of the laser beam at speeds in the range 100–200 μm/s at carefully selected growth conditions resulted in single crystalline selectively deposited films. Photoluminescence indicates that these deposited films have optical properties that are comparable with the conventionally (MOCVD) grown material.Laser beam irradiation has been used to form a superlattice (SL) structure which has been demonstrated in the GaAsP-GaAs system. When a GaAs substrate is exposed to fluxes of AsH3, PH3 and TMG at 500°C, only GaAs will be deposited because of the insufficient cracking of PH3. However, localized laser heating results in GaAsP deposition. A GaAsP-GaAs superlattice with a period of about 400 Å has been synthesized. This laser induced technique can thus have potential applications in the generation of abrupt interfaces without the use of shutters as in MBE or gas switching as in MOCVD.