Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T10:14:25.980Z Has data issue: false hasContentIssue false

Laser-Grown Silicon Nanoparticles and Photoluminescence Properties

Published online by Cambridge University Press:  21 March 2011

N. Herlin-Boime
Affiliation:
Service des Photons, Atomes et Molécules, Laboratoire Francis Perrin, CEA-CNRS URA 2453, Bat. 522, CEA Saclay, 91191 Gif sur Yvette Cédex, (France)
K. Jursikova
Affiliation:
Service des Photons, Atomes et Molécules, Laboratoire Francis Perrin, CEA-CNRS URA 2453, Bat. 522, CEA Saclay, 91191 Gif sur Yvette Cédex, (France)
E. Trave
Affiliation:
INFM, Dipartimento di Fisica “G. Galilei”, Università di Padova, Via Marzolo, 8, 35131 Padova, (Italy)
E. Borsella
Affiliation:
ENEA, UTS FIS, Via E. Fermi 45, I-00044 Frascati, Rome, (Italy)
O. Guillois
Affiliation:
Service des Photons, Atomes et Molécules, Laboratoire Francis Perrin, CEA-CNRS URA 2453, Bat. 522, CEA Saclay, 91191 Gif sur Yvette Cédex, (France)
F. Fabbri
Affiliation:
ENEA, UTS FIS, Via E. Fermi 45, I-00044 Frascati, Rome, (Italy)
J. Vicens
Affiliation:
SIFCOM - ENSICAEN, UMR CNRS 6176, 6 Bd du Maréchal-Juin, F-14050 Caen Cedex, (France)
C. Reynaud
Affiliation:
Service des Photons, Atomes et Molécules, Laboratoire Francis Perrin, CEA-CNRS URA 2453, Bat. 522, CEA Saclay, 91191 Gif sur Yvette Cédex, (France)
Get access

Abstract

Light-emitting silicon nanocrystals (Si nc) have attracted much interest due to their possible application as optoelectronic devices. The interest for Si nanopowders is enhanced by their photoluminescence (PL) emission intensity that can be very strong at room temperature. Due to the intrinsic biocompatibility of Si nanoparticles, this strong optical emission intensity as well as the long decay time (mean life time around hundred microseconds) make these powders potential candidates as tracers for in-vivo applications.

Si nanopowders were obtained in gram quantities by CO2 laser pyrolysis of silane. The particles in the produced powders are in the size range 10-15 nm. These nanoparticles exhibit strong red photoluminescence after heat treatment. The appearance of intense PL emission is clearly related to the surface oxidation of the powders which must be carefully controlled. Several steps have been identified in the oxidation process. This paper presents a detailed study of the evolution of both the photoluminescence intensity and spectral dependence and of the crystalline structure as a function of the heat treatment. We also show that the nanopowders can be dispersed in liquids and incorporated in gel samples while keeping their intense photoluminescence. This result opens a route towards the fabrication of novel devices

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, X., He, Y., Talukdar, S. and Swihart, M., Langmuir, 19, 8490 (2003).Google Scholar
2. Ehbrecht, M., Kohn, B., Huisken, F., Laguna, M. A., Paillard, V., Phys. Rev. B 56(11), 6958 (1997)Google Scholar
3. Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B. and Paillard, V., Phys. Rev. B 62(23): 15942–51 (2000)Google Scholar
4. Guillois, O., Herlin-Boime, N., Reynaud, C., Ledoux, G. and Huisken, F., J. Appl. Phys, 95, 3677(2004)Google Scholar
5. Botti, S., Celeste, A. and Coppola, R., Appl. Organometal. Chem. 12, 361 (1998).Google Scholar
6. Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S. and Marra, R. M., J. Am. Ceram. Soc. 65(7), 324 (1982)Google Scholar
7. Cauchetier, M., Croix, O., Luce, M., Michon, M., Paris, J. and Tistchenko, S., Ceram. Int. 13, 13 (1987).Google Scholar
8. Amans, D., Guillois, O., Ledoux, G., Porterat, D., Reynaud, C., J. Appl. Phys. 91, 5334 (2002).Google Scholar
9. Nunzio, P.E. Di, Martelli, S., Bitti, R. Ricci, J. Appl. Cryst (1995) 28, 146159 Google Scholar
10. Borsella, E., Falconieri, M., Botti, S., Martelli, S., Bignoli, F., Costa, L., Grandi, S., Sangaletti, L., Allieri, B. and Deper, L., Mater. Sci. Eng. B 79(1), 55 (2001)Google Scholar
11. Pai, P. G., Chao, S. S., Takagi, Y., Lucovsky, G., J. Vac. Sci. Technol. A 4 (3), (1986), 689694 Google Scholar
12. Vinciguerra, V., Franzo, G., Priolo, F., Iacona, F. and Spinella, C., J. Appl. Phys. 87, 8165 (2000).Google Scholar