Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:08:16.272Z Has data issue: false hasContentIssue false

Lateral Transport through Self-Assembled InAs Quantum Dots Located in the Narrow Gap Electrodes

Published online by Cambridge University Press:  10 February 2011

S. K. Jung
Affiliation:
School of Electrical Engineering, Korea University, Seoul 136-701, Korea
S. W. Hwang
Affiliation:
School of Electrical Engineering, Korea University, Seoul 136-701, Korea
J. H. Park
Affiliation:
School of Electrical Engineering, Korea University, Seoul 136-701, Korea
B. D. Min
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 131, Seoul 130-650, Korea
E. K. Kim
Affiliation:
School of Electrical Engineering, Korea University, Seoul 136-701, Korea
Yong Kim
Affiliation:
Department of Physics, College of Natural Sciences, Dong-A University, Hadan-2-Dong 840, Saha-gu, Pusan 604-714, Korea
Get access

Abstract

We have fabricated and characterized the lateral electron transport through InAs quantum dots with double barrier system. Aluminum metal electrodes with the inter-electrode spacing of 30 nm have been deposited on an InAs self-assembled quantum dot wafer to form the planar type quantum dot devices. Current peak structure and negative differential resistance effects are observed above 77 K in current-voltage characteristics. These results are interpreted as due to 3D-0D resonant tunneling through the single quantum dot positioned in between the electrodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Goldhaver-Gordon, D., Montemerlo, M. S., Love, J. Christopher, Opiteck, G. J., and Ellenborgen, J. C., Proc. IEEE 85, 521 (1997).10.1109/5.573739Google Scholar
[2] Kouwenhoven, L. P., Oosterkamp, T. H., Danoesatro, M. W. S., Eto, M., Austing, D. G., Honda, T., and Tarucha, S., Science 278, 1788 (1997).10.1126/science.278.5344.1788Google Scholar
[3] Reed, M. A., Randall, J. N., Aggarwal, R. J., Matyi, R. J., Moore, T. M., and Wetsel, A. E., Phys. Rev. Lett. 60, 535 (1988).10.1103/PhysRevLett.60.535Google Scholar
[4] Schmidt, T., Haug, R. J., Klitzing, K. v., Föster, A., and , Luith, Phys. Rev. B 55, 2230 (1997).10.1103/PhysRevB.55.2230Google Scholar
[5] Miller, B. T., Hansen, W., Manus, S., Luyken, R. J., Lorke, A., Kotthaus, J.P., Medeiros-Ribeiro, S. Haunt, and Petroff, M., Phys. Rev. B 56, 6764 (1997).10.1103/PhysRevB.56.6764Google Scholar
[6] ltskevich, I. E., Ihn, T., Thornton, A., Henini, M., Carmona, H. de A, Eaves, L., Main, P. C., Maude, D. K., and Portal, J. C., Jpn. J. Appi. Phys. 36, 4037 (1997).Google Scholar
[7] Suzuki, Toshi-kazu, Nomoto, K., Taira, K., and Hase, I., Jpn. J. Appl. Part 1, 36, 1917 (1997).10.1143/JJAP.36.1917Google Scholar
[8] Narihiro, M., Yusa, G., Nakamura, Y., Noda, T., and Sakaki, H., Appl. Phys. Lett. 70, 105 (1996).10.1063/1.119276Google Scholar
[9] Min, B. D., Kim, Y., Min, S.-K., and Park, M. J., Phys. Rev. B 57, 11879 (1998).10.1103/PhysRevB.57.11879Google Scholar
[10] Contacts to Semiconductors-Fundamentals and Technology, edited by Brillson, L. J. (Noyes, Park Ridge, NJ, 1993).Google Scholar
[11] Jung, S. K., Hwang, S. W., Choi, B. H., Park, J. H., Kim, Y., Kim, E. K., and Min, S.-K., Appl. Phys. Lett. 74, 715 (1999).10.1063/1.122996Google Scholar