Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:51:51.221Z Has data issue: false hasContentIssue false

Lead deficient PST Thin Films on LSCO/SrTiO3 by RF-Sputtering

Published online by Cambridge University Press:  01 February 2011

E. Martínez
Affiliation:
CICESE, Physics of Materials Graduate Program, Km. 107 Carr. Tijuana–Ensenada C.P. 22800, B.C., México.
O. Blanco
Affiliation:
CICESE, Physics of Materials Graduate Program, Km. 107 Carr. Tijuana–Ensenada C.P. 22800, B.C., México.
A. Fundora
Affiliation:
Facultad de Física, Universidad de la Habana, San Lázaro y L, 10400, Cuba.
J. M. Siqueiros
Affiliation:
Centro de Ciencias de la Materia Condensada, UNAM, Apdo. Postal 2681, C.P. 22800, Ensenada B.C., México.
Get access

Abstract

We have investigated the structural, chemical and electrical properties of films with Pb0.6Sr0.4TiO3 (PST60) nominal composition grown on well texturized LSCO/SrTiO3 (STO) substrates by RF-Sputtering. The crystal structure and electrical properties of the PST60 films are remarkably influenced by the texture characteristics of the LSCO films. The structural and ferroelectric characteristics of PST60 thin films are determined to evaluate the potential of this heterostructure for non-volatile memory applications. Epitaxy of LSCO films was confirmed before depositing PST60 films on the above mentioned substrates through 4-Circle X-Ray Diffraction analysis (θ/2θ, ω and φ scans). The XRD analysis performed on the ferroelectric PST60 layer showed that the films are textured and entirely perovskite phase. LSCO and PST60, crystallize in the perovskite structure and their lattice parameters are well matched. This fact renders favorable structural and chemical conditions for the growth of PST60 on LSCO. The electrical performance of the Pt/PST60/LSCO/SrTiO3(001) capacitors was evaluated through Polarization-Voltage (P-V), Current-Voltage (I-V) and Fatigue measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J.F. and Araujo, C.A., Science 246, 1400 (1989).Google Scholar
2. Warren, W.L., Dimos, D. and Waser, R.M., MRS Bull. 21, 40 (1996).Google Scholar
3. Ghonge, , Goo, E., Ramesh, R., Sands, T. and Keramidas, V.G., Appl. Phys. Lett. 63, 1628 (1993).Google Scholar
4. Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., Appl. Phys. Lett. 63, 3592 (1993).Google Scholar
5. Ramesh, R., Lee, J., Sands, T., Keramidas, V.G. and Auciello, O., Appl. Phys. Lett. 64, 2511(1994).Google Scholar
6. Dat, R., Lichtenwalner, D.J., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 64, 2673 (1994).Google Scholar
7. Jo, W., Kim, K.H., and Noh, T.W., Appl. Phys. Lett. 66, 3120 (1995).Google Scholar
8. Hou, C.S., Chou, C.C., Cheng, H.F., Appl. Surf. Sci. 113/114, 207 (1997).Google Scholar
9. Chou, C., Hou, C.S., Cheng, H.F., Ferroelectrics 206/207, 393 (1998).Google Scholar
10. Park, K.C. and Cho, J. H., Applied Physics Letters Vol. 77, Num.13, 435 (2000).Google Scholar
11. Chou, Chen-Chia, Hou, Chun-Shu, Chang, Guang-Chang, Appl. Surf. Sci. 142, 413 (1999).Google Scholar
12. Chung, H. J. and Woo, S. I., J. Vac. Sci. Technol. B 19 (1), 275 (Jan/Feb 2001).Google Scholar
13. Ramesh, R., Aggarwal, S., Auciello, O., Material Science and Engineering 32, 191236 (2001).Google Scholar