Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:52:05.712Z Has data issue: false hasContentIssue false

Leakage Currents through Thin Silicon Oxide Grown on Atomically Flat Silicon Surfaces

Published online by Cambridge University Press:  01 February 2011

Valerian Ignatescu
Affiliation:
Materials Science & Engineering, Cornell University 214 Bard Hall, Ithaca, NY 14853–1501
Jack M. Blakely
Affiliation:
Materials Science & Engineering, Cornell University 214 Bard Hall, Ithaca, NY 14853–1501
Get access

Abstract

Atomically flat surfaces can be obtained by high-temperature annealing in UHV of specially patterned silicon samples. Thin silicon oxide layers were grown by dry oxidation on three types of surfaces: (a) atomically flat surfaces, (b) normal (stepped) surfaces cleaned in UHV by the same high-temperature annealing and (c) normal wafer surfaces, which underwent just an RCA chemical cleaning before oxidation. Atomic force microscopy (AFM) was performed to reveal the topography of the surfaces. Aluminum pads were deposited on these oxidized surfaces using photolithography techniques. The leakage current through the oxide was measured for all three cases. Our results show that the smoother the surface before oxidation, the smaller the leakage current.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K. and Timp, G., Nature 399, 758 (1999)Google Scholar
2. Bohr, M., presentation at Intel Developer Forum, September 8, 2004 Google Scholar
3. Chau, R. S., Technology @ Intel Magazine, p. 1, January 2004 Google Scholar
4. Buchanan, D. A., IBM J. Res. Develop. 43, 245 (1999)Google Scholar
5. Lee, D. and Blakely, J., Surface Science 445, 32 (2000)Google Scholar
6. Homma, Y. and Finnie, P, J. Phys.: Condens. Matter 11, 9879 (1999)Google Scholar
7. Chang, K.-C. and Blakely, J. M., Mat. Res. Soc. Symp. Proc. 749, W16.5.1 (2003)Google Scholar
8. Chang, K.-C. and Blakely, J. M., Mat. Res. Soc. Symp. Proc. 782, A5.75.1 (2004)Google Scholar
9. Yang, Y.-N. and Williams, E. D., Phys. Rev. Lett. 72, 1862 (1994);Google Scholar
Scanning microscopy 8, 781 (1994)Google Scholar
10. Hannon, J. B., Tersoff, J. and Tromp, R. M., Science 295, 299 (2002)Google Scholar
11. Chang, K.-C., Lee, D., Umbach, K. and Blakely, J. M., Inst. Phys. Conf. Ser. 180, 637 (2003)Google Scholar
12. Metois, J. and Wolf, D., Surface Science 298, 71 (1993)Google Scholar
13. Alonso, C., Heynard, J. C. and Metois, J.J., Surf. Sci. Lett. 291, L745 (1993)Google Scholar
14. Gibson, J. M., Lanzerotti, M. Y. and Elser, V., Appl. Phys. Lett. 55, 1394 (1989)Google Scholar
15. Reed, M. L., Semicond. Sci. Technol. 4, 980 (1989)Google Scholar
16. Majkusiak, B. and Strojwas, A., J. Appl. Phys. 74, 5638 (1993)Google Scholar
17. Oliver, A. C. and Blakely, J. M., Mat. Res. Soc. Symp. Proc. 747, V 4.6.1 (2003)Google Scholar
18. Ignatescu, V. and Blakely, J., poster presentation at MRS Fall Meeting, Boston, December 1–5 2003, A 5.53 Google Scholar
19. Ross, F. M., Gibson, J. M. and Twesten, R. D., Surface Science 310, 243 (1994)Google Scholar