No CrossRef data available.
Published online by Cambridge University Press: 14 February 2013
Level set methods have been used for Solid phase epitaxial regrowth, etching and deposition.This study is to model the growth of nickel silicide accurately using the level set method. NiSi growth has been observed to follow a linear-parabolic law which takes into account both diffusion and interfacial reaction. This linear-parabolic system is very similar to the Deal and Grove model of SiO2 growth. This model uses similar diffusion transport and reaction rate equations. This simulation models the growth of silicide coupling diffusion solutions to level-set techniques. Dual level sets have been used for top and bottom interface propagation of silicide; velocities were estimated based on nickel concentrations at both interfaces as well as diffusivity and reaction rate of nickel. This is important to predict precise shape of silicide that will allow current crowding and field focusing effects to be modeled in transport out of the intrinsic device into the contacting layers. These simulation models can be used for latest technology nodes at 45, 32, 22nm and special devices such as FinFET’s etc. The level set method is successfully implemented and verified in Florida Object Oriented Process Simulator and growth shapes matches well with the literature Transmission Electron Microscopy data.