Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:01:52.870Z Has data issue: false hasContentIssue false

Light Emission from Intrinsic and Doped Silicon-Rich Silicon Oxide: from the Visible to 1.6 ΜM

Published online by Cambridge University Press:  15 February 2011

L. Tsybeskov
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY 14627
K. L. Moore
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
P. M. Fauchet
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627 Also Laboratory for Laser Energetics and Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627
D. G. Hall
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
Get access

Abstract

Silicon-rich silicon oxide (SRSO) films were prepared by thermal oxidation (700°C-950°C) of electrochemically etched crystalline silicon (c-Si). The annealing-oxidation conditions are responsible for the chemical and structural modification of SRSO as well as for the intrinsic light-emission in the visible and near infra-red spectral regions (2.0–1.8 eV, 1.6 eV and 1.1 eV). The extrinsic photoluminescence (PL) is produced by doping (via electroplating or ion implantation) with rare-earth (R-E) ions (Nd at 1.06 μm, Er at 1.5 μm) and chalcogens (S at ∼1.6 μm). The impurities can be localized within the Si grains (S), in the SiO matrix (Nd, Er) or at the Si-SiO interface (Er). The Er-related PL in SRSO was studied in detail: the maximum PL external quantum efficiency (EQE) of 0.01–0.1% was found in samples annealed at 900°C in diluted oxygen (∼ 10% in N2). The integrated PL temperature dependence is weak from 12K to 300K. Light emitting diodes (LEDs) with an active layer made of an intrinsic and doped SRSO are manufactured and studied: room temperature electroluminescence (EL) from the visible to 1.6 μmhas been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Namavar, F., Lu, F., Perry, C.H., Gremins, A., Kalkhoran, N.M., Daly, J.T. and Soref, R.A., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F. and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 375.Google Scholar
2.Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Sato, A., Appl. Phys. Lett. 65, 983 (1994).Google Scholar
3.Calcott, P.D.J., Nash, K.J., Canham, L.T. and Kane, M.J., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F. and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 465.Google Scholar
4.Prokes, S.M., Carlos, W.E., J. Appl. Phys. 78, 2671 (1995)Google Scholar
Prokes, S.M., Carlos, W.E., Glembocki, O.J., Phys. Rev. B 50, 17093 (1994).Google Scholar
5.Tsybeskov, L. et al. , Preparation and characterization of an active layer for an LED based onoxidized porous silicon, this volume.Google Scholar
6.Tsybeskov, L., Moore, K.L., Hall, D.G. and Fauchet, P.M., Phys. Rev. B 54, R8361, 1996.Google Scholar
7.Rindone, G.E., in Luminescence in Inorganic Solids, edited by Goldberg, P., Academic Press, NY & London, 1966, p. 419.Google Scholar
8.Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
9.Michel, J., Benton, J.L., Rerrante, R.F., C Jacobson, D., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimmerling, L.C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
10.Lombardo, S., Campisano, S.U., van den Hoven, G.N., Cacciato, A. and Polman, A., Appl. Phys. Lett. 63, 1942 (1993).Google Scholar
11.Bresier, M.S., Gusev, O.B., Kudoyarova, V.Kh., Kuznetsov, A.N., Pak, P.E., Terukov, E.I., Yassievich, I.N., Zakharchenya, B.P., Fuhs, W. and Sturm, A., Appl. Phys. Lett. 67, 3599 (1995).Google Scholar
12.Shin, J.H., van den Hoven, G.N., and Polman, A., Appl. Phys. Lett. 66, 2379 (1995).Google Scholar
13.Bradfield, P.L., Brown, T.G. and Hall, D.G., Appl. Phys. Lett. 51, 100 (1989).Google Scholar
14.Grimmeiss, H.G. and Janzen, E., in Deep Centers in Semiconductors, edited by Pantelides, S.T., Gordon & Breach Science Publishers, 2nd edition, Philadelphia, PA, 1986, p. 87.Google Scholar
15.Davis, G., Physics Reports 176, 83 (1989).Google Scholar
16.Tsybeskov, L., Duttagupta, S.P., Hirschman, K.D. and Fauchet, P.M., Appl. Phys. Lett. 68, 2058 (1996).Google Scholar
17.Tsybeskov, L., Moore, K.L., Duttagupta, S.P., Hirschman, K.D., Hall, D.G. and Fauchet, P.M., Appl. Phys. Lett. 69, 3411 (1996).Google Scholar
18.Adler, D.L., Jacobson, D.C., Eaglesham, D.J., Marcus, M.A., Benton, J.L., Poate, J.M. and Citrin, P.H., Appl. Phys. Lett. 61, 2181 (1992).Google Scholar
19.Tsybeskov, L., Duttagupta, S.P., Hirschman, K.D. and Fauchet, P.M., in Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N. and Brueck, S.R.J. (Electrochemical Society, Pennington, NJ) 1996, 3447.Google Scholar
20.Franzo, G., Priolo, F., Coffa, S., Polman, A., Camera, A., Appl. Phys. Lett. 64, 2235 (1994).Google Scholar
21.Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C. and Poate, J.M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
22.Isshiki, H., Kobayashi, H., Yugo, S., Kimura, T. and Ikoma, T., Appl. Phys. Lett. 58, 484 (1991).Google Scholar