Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T13:08:08.103Z Has data issue: false hasContentIssue false

Light Induced Changes in PIN Solar Cells: Beyond the Staebler-Wronski Effect

Published online by Cambridge University Press:  18 May 2012

Ka-Hyun Kim
Affiliation:
TOTAL S.A., Gas & Power – R&D Division, Courbevoie, France Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, Palaiseau, France
Erik V. Johnson
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, Palaiseau, France
Samir Kasouit
Affiliation:
TOTAL S.A., Gas & Power – R&D Division, Courbevoie, France
Pere Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, Palaiseau, France
Get access

Abstract

Hydrogenated polymorphous silicon (pm-Si:H) is one of the most promising candidates for a stable top cell material in multi-junction thin film solar cells. Solar cells using pm-Si:H as their absorbing layer show very interesting degradation kinetics when compared to hydrogenated amorphous silicon (a-Si:H), summarized by macroscopic structural changes and irreversible changes in solar cell characteristics, while nevertheless preserving a higher stabilized efficiency. Notably, pm-Si:H solar cells, once degraded, respond to neither annealing nor further light-soaking. Such results suggest a device degradation mechanism including structural changes, active hydrogen motion, and interface delamination mediated by fast hydrogen diffusion and accumulation at the interface. Interestingly, a similar behavior was reported for a-Si:H solar cells under severe light soaking conditions (at 350 °C or under 50 suns) while pm-Si:H solar cells show such behavior under 1 sun at 40 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fritzsche, H.. Annu. Rev. Mater. Res. 31, 47 (2001).CrossRefGoogle Scholar
Poissant, Y., Chatterjee, P., Roca i Cabarrocas, P., J. Non Cryst. Solids. 299-302, 1173 (2002).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Chevrier, J. B., Huc, J., Lloret, A., Parey, J. Y., and Schmitt, J. P. M., J. Vac. Sci. Technol. A9, 2331 (1991).CrossRefGoogle Scholar
Longeaud, C., Roy, D., and Saadane, O., Phys. Rev. B, 65, 085206 (2002).CrossRefGoogle Scholar
Bobela, D. C., Branz, H. M., and Stradins, P., Appl. Phys. Lett. 98, 201908 (2011).CrossRefGoogle Scholar
Acco, S., Williamson, D. L., van Sark, W. G. J. H. M., Sinke, W. C., van der Weg, W. F., Polman, A., and Roorda, S., Phys. Rev. B 58, 12853 (1998).CrossRefGoogle Scholar
Reimer, J. A., Vaughan, R. W., and Knights, J. C., Solid State Commun. 37, 161 (1981).CrossRefGoogle Scholar
Shanks, H. R. and Ley, L., J. Appl. Phys. 52, 811 (1981).CrossRefGoogle Scholar
Kail, F., Fellah, S., Abramov, A., Hadjadj, A., and Roca i Cabarrocas, P., J. Non Cryst. Solids, 352, 1083 (2006).CrossRefGoogle Scholar
Darwich, R., Roca i Cabarrocas, P., Vallon, S., Ossikovski, R., Morin, P., and Zellamam, K. Philos. Mag. B, 72, 363 (1995).CrossRefGoogle Scholar
Kail, F., Hadjadj, A. and Roca i Cabarrocas, P., Thin Solid Films 487, 126 (2005).CrossRefGoogle Scholar
Mahan, A. H., Beyer, W., Williamson, B.L., Yang, J. and Guha, S., Philos. Mag. Lett. 80, 647 (2000).CrossRefGoogle Scholar
Carlson, D. E. and Rajan, K., Appl. Phys. Lett. 69, 1447 (1996).CrossRefGoogle Scholar