Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T14:20:28.391Z Has data issue: false hasContentIssue false

Lightguide Technology Review and Status

Published online by Cambridge University Press:  21 February 2011

M. A. Safi*
Affiliation:
Bell Communications Research Inc. Murray Hill, NJ. 07974
Get access

Extract

Remarkable progress has been made in the lightguide technology over the past ten years. The realization of low loss optical fibers approaching intrinsic material limit and long life semiconductor lasers has stimulated rapid deployment of lightwave communication systems. Within the past five years the world wide fiber production capacity has grown from a few thousand to over one million kilometers per year. The impetus for this phenomenal growth can also be traced to recent advances in computer technology allowing low cost processing and storage of a great deal of complex information. This combination of information processing and transmission technologies is bringing a host of new services such as voice, data and visual communications, CATV, videotex and facsimile transmission, over the same network. One could therefore expect an accelerating growth in deployment of lightwave communication systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kao, K. C. and Hockham, G. A., Proc. IEE, 113 pp 11511158 (1966).Google Scholar
2. Kao, K. C. and Davis, T. W., J. Sci. Instrum., 1 (Ser. 2) pp 10631068 (1968).Google Scholar
3. Kapron, F. P., Keck, D. B., and Maurer, R. D., Appl. Phys. Lett., 17 pp 423425 (1970).Google Scholar
4. Linke, R. A., Kasper, B. L., Ko, J. S., Kaminow, I. P., and Vodhanel, R. S., Electron. Lett., 19 p 775 (1983).Google Scholar
5. DiMarcello, F. V., Brownlow, D. L., and Shenk, D. S., Tech. Dig. Third Int. Conf., 1981 Google Scholar
6. Gloge, D. and Gardner, W. B., Chapter 6 in “Optical Fiber Telecommunications,” Editors Miller, S. E., Chynoweth, A. G., Academic Press (1979).Google Scholar
7. Youn., M., Opt. Commun., 7 pp 253255 (1973).Google Scholar
8. Chun, T. C., McCormick, A. R., Bell Syst. Tech. J., 57 pp 595602 (1978).Google Scholar
9. Watkins, L. S., J. Opt. Soc. Am., 64, p 769.Google Scholar
10. Smithgall, D. H., Bell Syst. Tech. J., 58 pp 14251435.Google Scholar
11. McAfee, K. B. Jr., Hozack, R. S., and Laudise, R. A., J. of Lightwave Technology, LT–1, pp 555561 (1983).Google Scholar
12. French, W. G., Pace, L. J., and Foretmeyer, V. A., J. Phys. Chem., 82, p 2191 (1978).Google Scholar
13. Keck, D. B., Schultz, P. C. and Zimar, F., U.S. Patent 3737292, 1973.Google Scholar
14. Schultz, P. C., Proc. IEEE, 68 pp 11871190 (1980).Google Scholar
15. Edahiro, T., Kawachi, M., Sudo, S., and Inagaki, N., Transitions of IECE Japan, 63 pp 574580 (1980).Google Scholar
16. MacChesney, J. B., OCConnor, P. B., and Presby, H. M., Proc. IEEE, 62 p 1280 (1974).CrossRefGoogle Scholar
17. Nagel, S. R., MacChesney, J. B., and Walker, K. L., IEEE J. Quantum Electron., QE–18 pp 459476 (1982).CrossRefGoogle Scholar
18. French, W. G., MacChesney, J. B., O'Connor, P. B., and Tasker, G. W., Bell Syst. Tech. J., 53 pp 951954.Google Scholar
19. Walker, K. L., Geyling, F. T., and Nagel, S. R., J. Am. Ceram. Soc., 63 pp 552558 (1980).Google Scholar
20. Izawa, T., Kobayashi, S., Sudo, S., and Hanawa, F., Tech. Digest, IOOC, Tokyo, Japan, pp 375–378 (1977).Google Scholar
21. Nizeki, N., Japanese J. Appl. Phys., 20 pp 13471360 (1980).CrossRefGoogle Scholar
22. Nakahara, M., Chida, K., Hanawa, F., Sudo, S., Horiguchi, M., Electron. Lett., 16 pp 102103 (1980).Google Scholar
23. Imoto, K., Sumi, M., Electron. Lett., 17 pp 525526 (1981).Google Scholar
24. Kawachi, M., Sudo, S., Shibata, N., Japanese J. of Appl. Phys., 19 pp L69L71 (1980).CrossRefGoogle Scholar
25. Hanawa, F., Sudo, S., Kawachi, M., and Nakahara, M., Electron. Lett., 16 pp 699700 (1980).Google Scholar
26. Nakahara, M., Sudo, S., Inagaki, N., Yoshida, K., Shibuya, S., Kokura, K., and Kursha, T., Electron. Lett., 10 pp 391392 (1980).Google Scholar
27. Blyler, L. L. Jr. and DiMarcello, F. V., Proc. IEEE, 68 pp 11941198 (1980).Google Scholar
28. Runk, R. B., Technical Digest of Topical Meeting on Optical Fiber Transmission, Williamsburg, paper TuB5 (1977).Google Scholar
29. Smithgall, D. H., Watkins, L. S., and Frazee, R. E. Jr., Appl. Opt., 16 pp 23952402 (1977).Google Scholar
30. Pack, U. C. and Schroeder, C. M., Paper WI–8, Optical Fiber Conference, New Orleans, 1984 Google Scholar
31. Pack, U. C. and Schroeder, C. M., Appl. Opt., 20, pp 40284034 (1981).Google Scholar
32. Lamb, J. G., Harrison, A. P., McHugh, T. M., Electron. Lett., 19 pp 533534 (1983).Google Scholar
33. Maurer, R. D., Proc. IEEE, 61, pp 452463 (1973).Google Scholar
34. Rich, T. C. and Pinnow, D. A., Appl. Phys. Lett., 20 pp 264265 (1972).Google Scholar
35. Partus, F. P. and Saifi, M. A., Western Electric Engineer, XXIV, pp 3947 (1980).Google Scholar
36. Schultz, P. C., Proc. Int. Congr. Glass, 11th, 3 pp 155157 (1977).Google Scholar
37. Osanai, H., Shioda, T., Moriyama, T., Araki, S., Horiguchi, M., Izawa, T., and Takata, H., Electron. Lett., 12 pp 549550 (1976).Google Scholar
38. horiguchi, M. and Osanai, H., Electron. Lett., 12 pp 310311 (1976).Google Scholar
39. Schultz, P. C., J. of Am. Ceramic Soc., 57 pp 309313 (1974).Google Scholar
40. Keck, D. B., Maurer, R. D., and Schultz, P. C., Appl. Phys. Lett., 22 pp 307309 (1973).Google Scholar
41. Kaiser, P., Appl. Phys. Lett., 23 pp 4547 (1973).Google Scholar
42. Nagel, S. R. and Saifi, M. A., Electron. Lett., 16 pp 469470 (1980)Google Scholar
43. Gloge, D., IEEE Trans. Microwave Theory Tech., MTT–23 pp 106120 (1975).Google Scholar
44. Payne, D. N. and Gambling, W. A., Electron. Lett., 11 pp 176178 (1975).CrossRefGoogle Scholar
45. Miller, S. E., Bell Syst. Tech. J., 44 pp 20172064.Google Scholar
46. Olshansky, R. and Keck, D. B., Appl. Opt., 15 pp 483491 (1976).Google Scholar
47. Sladen, F. M. E., Payne, D. N., and Adams, M. I., Proc. Europ. Conf. Opt. Commun., 1978 orGoogle Scholar
47a. Electron. Lett., 13 pp 212213.Google Scholar
48. Marcuse, D., Appl. Opt., 18 pp 2073 (1979) andCrossRefGoogle Scholar
48a. Marcuse, D., Appl. Opt.corrections 19 p 188 (1980).Google Scholar
49. Fleming, J. W., Electron. Lett., 14 pp 326328 (1978).Google Scholar
50. Cohen, L. G., Lin, C., and French, W. G., Electron. Lett., 15 pp 334335 (1979).Google Scholar
51. Cohen, L. G., Mammal, W. L., Lumish, S., Electron. Lett., 18 pp 3839 (1981).Google Scholar
52. Lin, C., Liu, T. L., Lee, T. P., Burrus, C. A., Stone, S. T., Ritger, H. A., Electron. Lett., 17 pp 43440 (1981).Google Scholar
53. Okamoto, K., Edahiro, T., and Nakahara, M., Appl. Optics, 20 pp 23142318 (1981).Google Scholar
54. Schultz, P. C., Appl. Optics, 18 pp 36843693 (1979).Google Scholar
55. Keck, D. B. and Boullie, R., Optics Comm., 25 pp 4348 (1978).Google Scholar
56. Geittner, P., Kuppers, D., Lydtin, H., Appl. Phys. Lett., 28 pp 645 (1976).Google Scholar
57. Bachmann, P. et al. Tech. Digest, 5th IOOC, Tokyo, post deadline papers, p. 10 (1983).Google Scholar
58. Lazay, P. D. and Pearson, A. D., IEEE J. Quantum. Elect., QE–18 pp 504510 (1982).Google Scholar
59. Ainsle, B. J., Beales, K. J., Day, C. R., and Rush, J. D., IEEE J. Quantum Elect., QE–17 pp 854857 (1981).Google Scholar
60. Saifi, M. A., Jang, S. J., Cohen, L. G., and Stone, J., Opt. Lett., 7 pp 4345 (1982).Google Scholar
61. Ainsle, B. J., Beales, K. J., Cooper, D. M., Day, C. R., Rush, R. D., Electron. Lett., 18 pp 842843 (1982).Google Scholar
62. Jang, S. J., Cohen, L. G., Mammel, W. L., Saifi, M. A., Bell Syst. Tech. J., 61 pp 385390 (1982).Google Scholar
63. Miya, T., Okamoto, K., Ohmori, Y., and Sasaki, Y., IEEE J. Quantum Elect., QE–17 pp 858861.Google Scholar
64. Cohen, L. G., Mammel, W. L., Jang, S. J., Electron. Lett., 18 pp 3839 (1982).Google Scholar
65. Bhagvatula, V. A., Spopz, M. S., Love, W. F., to be published, Opt. Lett., May 1984.Google Scholar
66. Van Uiteret, L. G. and Wemple, S. H., Appl. Phys. Lett., 33 pp 57 (1978).Google Scholar
67. Robinson, M., Advances in IR Fibers, Proceedings SPIE (1982).Google Scholar
68. Angell, C. A. and Ziegler, D. C., Mat. Res. Bull., 16 pp 279 (1981).Google Scholar
69. Drexhage, M. G. and El-Bayoumi, O., “Heavy Metal Fluoride Glasses,” Rome Air Development Center Mass., (1982).Google Scholar
70. Poulain, M., Chanthanasinh, M., and Lucas, J., Mat. Res. Bull., 12 pp 151 (1977).Google Scholar
71. Shibata, S., Horiguchi, M., Jinguji, K., Mitachi, S., Kanamori, J., Manabe, T., Electron. Lett., 17 pp 775777 (1981).Google Scholar
72. Mimura, Y., Tokiwa, H., Shinbori, O., Elect. Lett., 20 pp 100101 (1984).Google Scholar
73. Mitachi, S., Miyashita, T., and Manabe, T., Phys. and Chem. of Glasses, 23 pp 196201 (1982).Google Scholar
74. Tran, D. C., Ginther, R. J., and Siegel, G. H., Mat. Res. Bull., 17 pp 11771184 (1982).Google Scholar
75. Grodkiewicz, W. H., O'Bryan, H. M., Pressman, L., Singh, S., Van Uiteret, L. G., and Zydzik, G., J. Non-Cryst. Solids, 44 pp 405 (1981).Google Scholar
76. Nassau, K., Chadwick, D. L., J. Am. Ceram. Soc., 65 pp 486491 (1982).Google Scholar
77. Miyashita, T. and Manabe, T., IEEE J. of Quantum Electron., QE–18 pp 14321450.Google Scholar