Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:05:06.437Z Has data issue: false hasContentIssue false

Linear and Nonlinear Thermal Transport in Graphene: Molecular Dynamics Simulations

Published online by Cambridge University Press:  17 October 2011

Bo Qiu
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
Yan Wang
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
Xiulin Ruan*
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
*
Get access

Abstract

In this work, we perform molecular dynamics (MD) simulations to study the linear thermal transport in suspended graphene and the nonlinear thermal transport phenomena in graphene nanoribbons (GNR). We use spectral energy density analysis to quantitatively address the relative importance of different types of phonon in thermal transport in suspended graphene. Negative differential thermal conductance (NDTC) and thermal rectification in graphene nanoribbons have been studied using nonequilibrium molecular dyanmics simulations. Ballistic transport regime, sufficient temperature nonlinearity and asymmetry are found to be necessary conditions for the onset of these behaviors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.Google Scholar
(2) Cai, W.; Moore, A. L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R. S. Nano Lett. 2010, 10, 1645.Google Scholar
(3) Lee, J.-U.; Yoon, D.; Kim, H.; Lee, S. W.; Cheong, H. Phys. Rev. B 2011, 83, 081419.Google Scholar
(4) Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phys. Rev. B 2009, 79, 155413.Google Scholar
(5) Klemens, P. G. J. Wide Bandgap Mater. 2000, 7, 332.Google Scholar
(6) Lindsay, L.; Broido, D. A.; Mingo, N. Phys. Rev. B 2010, 82, 115427.Google Scholar
(7) Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. Science 2006, 314, 11211124.Google Scholar
(8) Li, B.; Wang, L.; Casati, G. Phys. Rev. Lett. 2004, 93, 184301.Google Scholar
(9) Wang, L.; Li, B. Phys. Rev. Lett. 2007, 99, 177208.Google Scholar
(10) Hu, J.; Ruan, X.; Chen, Y. P. Nano Letters 2009, 9, 27302735, PMID: 19499898.Google Scholar
(11) Yang, N.; Li, N.; Wang, L.; Li, B. Phys. Rev. B 2007, 76, 020301.Google Scholar
(12) Yang, N.; Zhang, G.; Li, B. Applied Physics Letters 2009, 95, 033107.Google Scholar
(13) Lo, W. C.; Wang, L.; Li, B. Journal of the Physical Society of Japan 2008, 77, 054402.Google Scholar
(14) Alaghemandi, M.; Leroy, F.; Müller-Plathe, F.; Böhm, M. C. Phys. Rev. B 2010, 81, 125410.Google Scholar
(15) Segal, D. Phys. Rev. B 2006, 73, 205415.Google Scholar
(16) Plimpton, S. J. Comp. Phys. 1995, 117, 1.Google Scholar
(17) Lindsay, L.; Broido, D. A. Phys. Rev. B 2010, 81, 205441.Google Scholar
(18) Turney, J. E.; Thomas, J. A.; McGaughey, A. J. H.; Amon, C. H. ASME/JSME 9th Thermal Engineering Joint Conference 2011, AJTEC201144315.Google Scholar
(19) Nose, S. The Journal of Chemical Physics 1984, 81, 511519.Google Scholar
(20) Hoover, W. G. Phys. Rev. A 1985, 31, 16951697.Google Scholar
(21) Shiomi, J.; Maruyama, S. Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes.Google Scholar
(22) Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Brooks Cole, 1976.Google Scholar
(23) Taylor, R. Philos. Mag. 1966, 13, 157.Google Scholar
(24) Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; Mingo, N.; Ruoff, R. S.; Shi, L. Science 2010, 328, 213.Google Scholar
(25) Aksamija, Z.; Knezevic, I. Applied Physics Letters 2011, 98, 141919.Google Scholar
(26) Sawaki, D.; Kobayashi, W.; Moritomo, Y.; Terasaki, I. Applied Physics Letters 2011, 98, 081915.Google Scholar
(27) Kobayashi, W.; Teraoka, Y.; Terasaki, I. Applied Physics Letters 2009, 95, 171905.Google Scholar
(28) He, D.; Buyukdagli, S.; Hu, B. Phys. Rev. B 2009, 80, 104302.Google Scholar