Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:01:45.706Z Has data issue: false hasContentIssue false

Linear-Response Calculations of Electron-Phonon Coupling Parameters and Free Energies of Defects

Published online by Cambridge University Press:  10 February 2011

Andrew A. Quong
Affiliation:
Sandia National Laboratories, Livermore CA 94551-0969
Amy Y. Liu
Affiliation:
Department of Physics, Georgetown University, Washington, DC 20057
Get access

Abstract

Linear-response theory provides an efficient approach for calculating the vibrational properties of solids. Moreover, because the use of supercells is eliminated, points with little or no symmetry in the Brillouin zone can be handled. This allows accurate determinations of quantities such as real-space force constants and electron-phonon coupling parameters. We present highly converged calculations of the spectral function α2F(ω) and the average electron-phonon coupling for Al, Pb, and Li. We also present results for the free energy of vacancy formation in Al calculated within the harmonic approximation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baroni, S., Giannozzi, P., Testa, A., Phys. Rev. Lett. 58, 1861 (1987); X. Gonze, D. C. Allan, and M. P. Teter, Phys. Rev. Lett. 68, 3603 (1992); S. Y. Savrasov, Phys. Rev. Lett. 69, 2819 (1992).Google Scholar
2. Quong, A. A. and Klein, B. M., Phys. Rev. B. 46, 10734 (1992); A. A. Quong, A. Y. Liu and B. M. Klein, Proceedings of the Fall 1992 MRS Meeting (Mat. Res. Soc, Pittsburgh, 1992).Google Scholar
3. Savrasov, S. Y., Savrasov, D. Y. and Andersen, O. K., Phys. Rev. Lett. 72, 372 (1994).Google Scholar
4. See, for example, Grimvall, G., The Electron-Phonon Interaction in Metals (North Holland, Amsterdam, 1981).Google Scholar
5. Gilat, G. and Nicklow, R. M., Phys. Rev. 143, 487 (1966).Google Scholar
6. See, for example, Wolf, E. L., Principles of Electron Tunneling Spectroscopy (Oxford University, New York, 1985).Google Scholar
7. Dacorogna, M. M., Cohen, M. L. and Lam, P. K., Phys. Rev. Lett. 55, 837 (1985).Google Scholar
8. Phillips, N. E., CRC Crit. Rev. Solid State Sci. 2, 467 (1971).Google Scholar
9. Brockhouse, B. N., Arase, T., Caglioti, C., Rao, K. R. and Woods, A. D. B., Phys. Rev 128, 1099 (1962).Google Scholar
10. Cowley, E. R., Solid State Commun. 14, 587 (1974).Google Scholar
11. McMillan, W. L. and Rowell, J. M., in Superconductivity, edited by Parks, R. (Marcel Dekker, New York, 1969), Vol 1.Google Scholar
12. Liu, A. Y. and Cohen, M. L., Phys. Rev. B 44, 9678 (1991).Google Scholar
13. See, for example, Vita, A. D. and Gillan, M. J., J. Phys. Condens. Matter 3 6225 (1991) and references therein.Google Scholar
14. Fluss, M. J., Smedskjaer, L. C., Chason, M. K., Legnini, D. G., and Siegel, R. W., Phys. Rev. B 17 3444 (1978).Google Scholar