Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T02:40:30.578Z Has data issue: false hasContentIssue false

Liquid-Phase Epitaxy of Hg1−xCdxTe from Hg Solution: A Route to Infrared Detector Structures

Published online by Cambridge University Press:  25 February 2011

Tse Tung
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
M. H. Kalisher
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
A. P. Stevens
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
P. E. Herning
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
Get access

Abstract

Over the past few years, liquid-phase epitaxy (LPE) has become an established growth technique for the synthesis of HgCdTe. This paper reviews one of the most successful LPE technologies developed for HgCdTe, specifically, “infinite-melt” vertical LPE (VLPE) from Hg-rich solutions.

Despite the very high Hg vapor pressure (> 10 atm) and the extremely low solubility of Cd in the Hg solution (< 10−3 mol%), this approach was believed to offer the best long-term prospect for growth of HgCdTe suitable for various device structures. Since the initial demonstration of LPE growth of HgCdTe layers from Hg solution in experiments conducted at SBRC in 1978, the VLPE technology has advanced to the point where epitaxial HgCdTe can now be grown for photoconductive (PC) and photovoltaic (PV) as well as monolithic metal-insulator-semiconductor (MIS) and high-frequency laser-detector devices with state-of-the-art performance in the entire 2–12 μm spectral region.

A historical perspective and the current status of VLPE technology are reported. Particular emphasis is placed on the important role of the ther-modynamic parameters (phase diagram) and on control of stoichiometry (defect chemistry) and impurity doping (distribution coefficient) for growth of HgCdTe layers from Hg solution. Critical material characteristics, such as transport properties, minority-carrier lifetime, morphology and crystal structure, are also discussed. Finally, a comparison with the LPE technol-ogy using Te solutions, which has been the mainstay of the remainder of the IR community, is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Long, O. and Schmit, J.L., in Semiconductors and Semimetals, Vol.5, edited by Willardson, R.K. and Beer, A.C., (Academic Press, New York, 1970).Google Scholar
2. Dornhous, R. and Nimtz, J., Solid State Physics, Springer Tracts in Modern Physics, Vol.98, (Springer-Verlag, Berlin, 1983).Google Scholar
3. Semiconductors and Semimetals, Vol.18, edited by Willardson, R.K. and Beer, A.C., (Academic Press, New York, 1982).Google Scholar
4. Boukerche, M., Wijewarnasuriya, P.S., Reno, J., Sou, I.K., and Faurie, J.P., J. Vac Sci., Technol. A4 (4), 2072 (1986).CrossRefGoogle Scholar
5. Mullin, J.B., Irvine, S.J. C, and Giess, J., Royle, A., J. Crystal Growth 72, 1 (1985).Google Scholar
6. Hsieh, J.J., in Handbook on Semiconductors, Vol.3, edited by Keller, S.P. (North Holland, Amsterdam, 1980) Chap. 6.Google Scholar
7. Jordan, A.S., von Neida, A.R., Caruso, R., and Kim, C., J. Electrochem Soc. 121, 153 (1974).Google Scholar
8. Stringfellow, G.B., Rep. Prog. Phys., Vol.45, 469 (1982).Google Scholar
9. Herning, P., J. Electron. Mater. 13, 1 (1984).Google Scholar
10. Wang, C.C., Shin, S.H., Chu, M., Lanir, M., and Vanderwyck, A.H.B., J. Electrochem. Soc. 127, 175 (1980).CrossRefGoogle Scholar
11. Castro, C.A. and Korenstein, R., Proc. Soc. Photo-Opt. Instrum. Eng. 317, 262 (1981).Google Scholar
12. Bowers, J.E., Schmit, J.L., Speerschneider, C.J., and Maciolek, R.B., IEEE Trans. Electron Devices ED-27, 24 (1980).Google Scholar
13. Mironov, K.E., Ogorodnikov, V.K., Rozumnyi, V.D., and Ivanov-Omskii, V.I., Phys. Stat. Sol. (a) 78, 125 (1983).Google Scholar
14. Harman, T.C., J. Electron. Mater. 9, 945 (1980).Google Scholar
15. Nemirovosky, Y., Margalit, S., Finkman, E., Shacham-Diamand, Y., and Kidron, I., J. Electron. Mater. 11, 133 (1982).Google Scholar
16. Edwall, D.D., Gertner, E.R., and Tennant, W.E., J. Appl. Phys. 55, 1453 (1984).Google Scholar
17. Vydyanath, H.R., Ellsworth, J.A., and Devaney, C.M., J. Electron. Mater., 16 (1), 13 (1987).Google Scholar
18. Tranchart, J.C., Latorre, B., Foucher, C., and Gouge, Y. Le, J. Crystal Growth 72, 468 (1985).Google Scholar
19. Nakahama, K., Ohkator, R., Nishitani, K., and Murotani, T., J. Electron. Mater. 13, 67 (1984).Google Scholar
20. Mroczkowski, J.A. and Vydyanath, H.R., J. Electrochem. Soc. 128, 655 (1981).Google Scholar
21. Janik, E., Ferah, M., Legros, R., Triboulet, R., Brossa, T., and Riant, Y., J. Crystal Growth 72, 133 (1985).Google Scholar
22. Yoshikawa, M., Ueda, S., Maruyama, K., and Takigawa, H., J. Vac. Sci. Technol. A3 (1), 153 (1985).Google Scholar
23. Amingual, D., Destefanis, G.L., Guillot, S., Ouvrier-Buffet, J.L., Paltrier, S., and Zenatti, D., 1986 Innsbuck SPIE Proceeding (to be published).Google Scholar
24. Ruda, H., Becla, P., Lagowski, J., and Gatos, H.C., J. Electrochem. Soc. 130 (1), 228 (1983).Google Scholar
25. Astles, M., Blackmore, G., Gordon, N., and Wight, D.R., J. Crystal Growth 72, 61 (1985).Google Scholar
26. Speerschnieder, C.J. and Maciolek, R.B., Honeywell Technical Report, Contract DAHC60-70-C-008 (1973).Google Scholar
27. Ivanov-Omskii, V.I., Mironov, K.E., and Ogorodnikov, V.K., Phys. Stat. Sol. (a) 58, 543 (1980).Google Scholar
28. Konnikov, S.G., Ogorodnikov, V.K., and Sydorchuk, P.G., Phys. Stat. Sol. (a) 27, 43 (1975).Google Scholar
29. Fleming, J.G. and Stevenson, D.A., J. Electrochem. Soc. (to be published).Google Scholar
30. Harman, T.C., J. Electron. Mater. 10, 1069 (1981).Google Scholar
31. Kamath, G.S., Evan, J., and Knechtli, R.C., IEEE Trans. Electron Devices 24, 473 (1977).Google Scholar
32. Steininger, J., J. Crystal Growth 37, 107 (1977).Google Scholar
33. Steiniger, J., J. Electron. Mater. 5, 299 (1976).Google Scholar
34. Strauss, A.J. and Brebrick, R.F., J. Phys. Chem. Solids 31, 2293 (1970).Google Scholar
35. Smith, F.T.J., Met. Trans. 1, 617 (1970).Google Scholar
36. Schmit, J.L. and Stelzer, E.L., J. Electron. Mater. 7, 65 (1978).CrossRefGoogle Scholar
37. Vydyanath, H.R., J. Electrochem. Soc. 128, 2609(I); 2619(II); 2625(III) (1981).Google Scholar
38. Su, C-H., Liao, P-K., Tung, T., and Brebrick, R.F., J. Electron. Mater. 11, 931 (1982).Google Scholar
39. Su, C-H., Liao, P-K., and Brebrick, R.F., J. Electron. Mater. 12 (5), 771 (1983).Google Scholar
40. Brebrick, R.F. and Schwartz, J.P., J. Electron. Mater. 9, 485 (1980).CrossRefGoogle Scholar
41. Chu, M., J. Appl. Phys. 51, 5876 (1980).Google Scholar
42. Sctiaake, H.F., J. Electron. Mater. 14, 513 (1985).Google Scholar
43. Yang, J., Yu, Z., and Tang, D., J. Crystal Growth 72, 275 (1985).Google Scholar
44. Jones, C.L., Quelch, M.J. T, Capper, P., and Gosney, J.J., J. Appl. Phys. 53 (12), 9080 (1982).Google Scholar
45. Zhang, J. and Thuillier, J.C., Phys. Stat. Sol. (a) 77, 649 (1983).Google Scholar
46. Chang, Y.A. and Smith, J.F. eds. of Calculations of Phase Diagrams and Thermochemistry of Alloy Phases (The Metallurgical Soc. of AIME, Warrendale, PA, 1979).Google Scholar
47. Brebrick, R.F., Su, C-H., and Liao, P-K. in Semiconductors and Semimetals, Vol.19, edited by Willardson, R.K. and Beer, A.C., (Academic Press, New York, 1983).Google Scholar
48. Tung, T., Golonka, L., and Brebrick, R.F., J. Electrochem. Soc. 128, 1601 (1981).Google Scholar
49. Tung, T., Su, C-H., Liao, P-K., and Brebrick, R.F., J. Vac. Sci. Technol. 21, 117 (1982).CrossRefGoogle Scholar
50. Tung, T., Ph.D thesis, Marquette University, 1983.Google Scholar
51. Su, C-H., J. Crystal Growth 78, 51 (1986).Google Scholar
52. Meschter, P.J., Owens, K.E., and Tung, T., J. Electron. Mater. 14 (1), 33 (1985)Google Scholar
53. Su, C-H., Liao, P-K, Tung, T., and Brebrick, R.F., High Temp. Sci. 14, 181, (1981).Google Scholar
54. Schwartz, J.P., Tung, T., and Brebrick, R.F., J. Electrochem. Soc. 128, 438 (1981).Google Scholar
55. Tung, T., Golonka, L., and Brebrick, R.F., J. Electrochem. Soc. 128, 451 (1981).Google Scholar
56. Su, C-H., Liao, P-K., and Brebrick, R.F., J. Electrochem. Soc. 132, 942 (1985).CrossRefGoogle Scholar
57. Brebrick, R.F., J. Phys. Chem. Solids, 40, 177 (1979).Google Scholar
58. Kalisher, M.H. (unpublished).Google Scholar
59. Vanyukov, A.V., Krotov, I.I., and Ermakov, A.I., Inorg. Mater. 13, 667 (1977).Google Scholar
60. Brebrick, R.F., in Progress in Solid State Chemistry, Vol.3, edited by Reiss, H., Pergamon Press, Oxford (1966).Google Scholar
61. Brebrick, R.F., in Treatise on Solid State Chemistry, Vol.2, edited by Hannay, N.B., Plenum Press, New York (1975).Google Scholar
62. Brebrick, R.F. and Strauss, A.J., J. Phys. Chem. Solids, 26, 989 (1965).Google Scholar
63. Reynolds, R.A., Brau, M.J., Kraus, H., and Bate, R.T., in The Physics of Semimetals and Narrow Gap Semiconductors, edited by Carter, D.L. and Bate, R.T., Pergamon Press, Oxford (1971).Google Scholar
64. Anderson, P.L., Schaake, H.F., and Tregilgas, J.H., J. Vac. Sci. Technol., 21 (1), 125 (1982).Google Scholar
65. Brebrick, R.F. (private communication).Google Scholar
66. Edwall, D.D., Gertner, E.R., and Tennant, W.E., J. Electron. Mater. 14 (3), 245 (1985).Google Scholar
67. Caporaletti, O. and Micklethwaite, W.F.H., Phys. Lett. 89A, 151 (1982).Google Scholar
68. Chen, J.S., Kroger, F.A., and Ahlgren, W.L., Extended Abstracts of the 1984 U.S. Workshop on the Physics and Chemistry of HgCdTe.Google Scholar
69. Brown, M. and Willoughby, A.F.W., J. Crystal Growth 59, 27 (1982).Google Scholar
70. Kinch, M.A., J. Vac. Sci. Technol., 21 (1), 215 (1982).Google Scholar
71. Johnson, E.S. and Schmit, J.L., J. Electron. Mater 6 (1), 25 (1977).Google Scholar
72. Capper, P., Gosney, J.J.G., Jones, C.L., Kenworthy, I., and Roberts, J.A., J. Crystal Growth 71, 57 (1985).Google Scholar
73. Ching-Hua, Su (private communication).Google Scholar
74. Jones, C.E., James, K., Merz, J., Braunstein, R., Burd, M., Eetemadi, M., Hutton, S., and Drumheller, J., J. Vac. Sci. Technol A 3, 131 (1985).Google Scholar
75. Bratt, P.R., Rhiger, D.R., Riley, K.J., and Wong, J.Y., Final Report, Contract No. F33615-77-C-5270, Santa Barbara Research Center, August 1981.Google Scholar
76. Schacham, S.E., Finkman, E., J. Appl. Phys. 57 (6), 2001 (1985).Google Scholar
77. Finkman, E., Nemirovsky, Y., J. Appl. Phys. 59 (4), 1205 (1986).Google Scholar
78. Itoh, M., Takigawa, H., and Ueda, R., IEEE Trans. Electron Devices, ED-27, 150 (1980).Google Scholar
79. Unpublished SBRC data.Google Scholar
80. Kalisher, M.H., J. Crystal Growth 70, 365 (1984).Google Scholar
81. Lapidas, L.E., Whitney, R.L., and Crosson, C.A., in Applied Materials Characterization, edited by Katz, W. and Williams, P., Mat. Res. Soc. Symp. Proc. vol.48, 365 (1985).Google Scholar
82. Radford, W.A., Jones, C.E., Smith, E.J., and Lou, L.F., Proceedings of the IRIS Detector Specialty Group Meeting, Seattle, Washington (1984).Google Scholar
83. Pearson, G.L. and Bardeen, J., Phys. Rev. 75, 865 (1949).Google Scholar
84. Kane, E.O., Phys. Rev. 131, 79 (1963).Google Scholar
85. Mott, N.F. and Twose, W.D., Advan. Phys. 10, 107 (1961).Google Scholar
86. Capper, P., J. Crystal Growth 57, 280 (1982).Google Scholar
87. Radford, W.A., Kvaas, R.E., and Johnson, S.M., Proceedings of the IRIS Specialty Group on Infrared Materials, Menlo Park, California (1986).Google Scholar
88. Bajaj, J., Shin, S.H., Pasko, J.G., and Khoshnevisan, M., J. Vac. Sci. Technol. A1 (3), 1749 (1983).CrossRefGoogle Scholar
89. Chen, J.S., Bajaj, J., Brown, M., and Tennant, W. E., Abstracts of the “Materials for Infrared Dettectors and Sources” Symposium, 1986 MRS Fall Meeting, Boston, Massachusetts, 1986, P. 660.Google Scholar
90. Polla, D.L., Aggarwal, R.L., Nelson, D.A., Shanley, J.F., and Reine, M.B., Appl. Phys. Lett. 43 (10), 941 (1983).Google Scholar
91. Casselman, T.N. (private communication).Google Scholar
92. Long, D., in Topics in Applied Physics, edited by Keyes, R.J., Springer- Verlag, Berlin and New York (1977).Google Scholar
93. Long, D., Tredwell, T.J., and Woodfill, J.R., Joint Meeting of the IRIS Specialty Groups on Infrared Detectors and Imaging, Vol.1, 387 (1978).Google Scholar
94. Hansen, G.L., Schmit, J.L., Casselman, T.N., J. Appl. Phys., 53, 7099 (1982).Google Scholar
95. Chu, J.H., Xu, S.C., and Tang, D.Y., Appl. Phys. Lett. 43, 1064 (1983).Google Scholar
96. Tung, T. (unpublished).Google Scholar
97. Shaw, Don W., J. Crystal Growth 62, 247 (1983).Google Scholar
98. Wood, R.A. and Hager, R.J., J. Vac. Sci. Technol. A1 (3), 1608 (1983).Google Scholar
99. James, T.W. and Stoller, R.E., Appl. Phys. Lett. 44, 56 (1984).Google Scholar
100. Bell, S.L. and Sen, S., IRIS Detector Speciality Group Meeting, Boulder, Colorado (1983).Google Scholar
101. Bell, S.L. and Sen, S., J. Vac. Sci. Technol. A3 (1), 112 (1985).Google Scholar
102. Yoshikawa, M., Maruyama, K., Saito, T., Maekawa, T., and Takigawa, H., Extended Abstracts of the 1986 U.S. Workshop on the Physics and Chemistry of HgCdTe, P. O/D 1–17.Google Scholar
103. Horning, R.D. and Standenmann, J.L., Appl. Phys. Lett. 49 (23), 1590 (1986).Google Scholar
104. Hails, J.E., Russel, G.J., Brinkman, A.W., and Woods, J., J. Appl. Phys. 60 (7) 2624 (1986); J. Crystal Growth (To be published).CrossRefGoogle Scholar
105. Mullin, J.B., Giess, J., Irvine, S.J.C., Abstracts of the “Materials For Infrared Detectors and Sources” Symposium, 1986 MRS Fall Meeting, Boston, Massachusetts, 1986, P.663.Google Scholar
106. Bratt, P.R., J. Vac. Sci. Technol. A1 (3), 1687 (1983).Google Scholar
107. Bratt, P.R. and Casselman, T.N., J. Vac. Sci. Technol. A3 (1), 238 (1985).Google Scholar
108. Migliorato, P. and White, A.M., Solid State Electron. 26, 65 (1983).Google Scholar
109. Migliorato, P., Farrow, R.F.C., Dean, A.B., and Williams, G.M., Infrared Phys. 22, 331 (1982).Google Scholar
110. Tang, M.F.S. and Stevenson, D.A., Extended Abstracts of the 1986 U.S. Workshop on the Physics and Chemistry of HgCdTe, P. O/D 11–17.Google Scholar
111. Bubulac, L.O., Lo, D.S., Tennant, W.E., Edwall, D.D., and Robinson, J.C., J. Vac. Sci. Technol. A4 (4), 2169 (1986).Google Scholar
112. Destefanis, G.L., J. Vac. Sci. Technol, A3, 171 (1985).Google Scholar
113. Fraenkal, A., Schacham, S.E., Bahir, G., and Finkman, E., J. Appl. Phys. (to be published).Google Scholar
114. Raccah, P.M., Garland, J.W., Zhang, Z., De, Y., Tennant, W.E., and Bubulac, L.O., Extended Abstracts of the 1986 U.S. Workshop on the Physics and Chemistry of HgCdTe, P. V-13.Google Scholar
115. Botts, S.E., IEEE Trans. Electron Devices, ED-32 (8), 1584 (1985).Google Scholar
116. Koch, T.L., De Loo, J.H., Kalisher, M.H., and Phillips, J.D., IEEE Trans. Electron Devices ED-32 (8), 1592 (1985).Google Scholar
117. Riley, K.J. and Lockwood, A.H., SPIE 217, 206 (1980).Google Scholar
118. Whitney, R.L., Casselman, T.N., and Kosai, K., Proceedings of the IRIS Detector Specialty Group Meeting(1985).Google Scholar
119. Lanir, M., Riley, K.J., IEEE Trans. Electron Devices, ED-29 (2), 274 (1982).Google Scholar
120. Van Vechten, J.A. in Handbook on Semiconductors, Vol.3, edited by Keller, S.P. (North Holland, Amsterdam, 1980) Chap. 1.Google Scholar