Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T09:47:03.042Z Has data issue: false hasContentIssue false

Localized Surface Instabilities of Stressed Solids

Published online by Cambridge University Press:  10 February 2011

J. Colin
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, BP 179, F-86960 Futuroscope Cedex, France
J. Grilhé
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, BP 179, F-86960 Futuroscope Cedex, France
N. Junqua
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, BP 179, F-86960 Futuroscope Cedex, France
Get access

Abstract

Localized instabilities formation on the free surface of solids has been studied when sources of non-homogeneous stress such as dislocations or precipitates are present in the bulk. This formalism of localized perturbations has been used to describe the butterfly transformation of cubic precipitates in superalloys and the contraction of rectangular specimens under stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Asaro, R. J. and Tiller, W. A., Metall. Trans. 3, pp. 17891796 (1972).Google Scholar
2 LeGoues, F. K., Copel, M. and Tromp, R. M., Phys. Rev. B 42, p. 11690 (1990).Google Scholar
3 Guha, S., Madhukar, A. and Rajkumar, K. C., Appl. Phys. Lett. 57, p. 2110 (1990).Google Scholar
4 Grinfeld, M. A., Dokl. Akad. Nauk. 290, p. 1358 (1986).Google Scholar
5 Nozières, P., J. Physique I 3, p. 1 (1993).Google Scholar
6 Srolovitz, D. J., Acta Metall. 37, p. 621 (1991).Google Scholar
7 Grilhé, J., Acta Metall. 41, p. 909 (1993).Google Scholar
8 Chiu, C. H. and Gao, H., Int. J. Solids Struct. 21, p. 2983 (1993).Google Scholar
9 Spencer, B. J., Voorhees, P. W. and Davis, S. H., J. Appl. Phys. 73, p. 955 (1993).Google Scholar
10 Jonsdottir, F., Modell, J.. Simul. Mater. Sci. Eng. 3, p. 503 (1995).Google Scholar
11 Gao, H., J. Mech. Phys. Solids 42, p. 741 (1994).Google Scholar
12 Colin, J., Junqua, N. and Grilhé, J., Acta Mater. 9, p. 3855 (1997).Google Scholar
13 Colin, J., Junqua, N. and Grilhé, J., Europhys. Lett. 38, p. 307 (1997).Google Scholar
14 Grossmann, A. and Morley, J., SIAM J. Math. Analysis 15, p. 723 (1984).Google Scholar
15 Jagannadham, K. and Marcinkowski, M. J., Physica Status Solidi (a) 50, p. 293 (1978).Google Scholar
16 Colin, J., Junqua, N., Grilhé, J., Acta Mater. 46, pp. 12491255 (1998).Google Scholar
17 Ganghoffer, J. F., Hazotte, A., Denis, S. and Simon, A., Scripta Metall. 25, p. 2491 (1991).Google Scholar
18 Khachaturyan, A. G., Semeovskaya, S. V. and Morris, J. W., Acta Metall. 36, p. 1563 (1988).Google Scholar
19 Wang, Y., Chen, L. Q. and Khachaturyan, A. G., Scripta Metall. 25, p. 1387 (1991).Google Scholar