Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T14:13:24.765Z Has data issue: false hasContentIssue false

Low Dielectric Constant Fluorocarbon Films

Published online by Cambridge University Press:  10 February 2011

K. K. S. Lau
Affiliation:
Chemical Engineering Department, MIT, Cambridge, MA 02139, klau@mit.edu, kkgleasn@mit.edu
K. K. Gleason
Affiliation:
Chemical Engineering Department, MIT, Cambridge, MA 02139, klau@mit.edu, kkgleasn@mit.edu
Get access

Introduction

Chemical vapor deposition (CVD) continues to generate immutable interest as a method of producing thin fluorocarbon films. This impetus stems from both the process advantages of CVD and the extensive market potential for the resultant films. Fluorocarbon films find extremely diverse applications because of their unique electrical, chemical and surface properties. They are currently being evaluated, among other applications, as dielectric interconnects in microelectronic circuits1–3 and as passivation coatings in clinical devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Endo, K., MRS Bulletin, 22, 55 (1997).Google Scholar
2. Endo, K, Tatsumi, T., Matsubara, Y., Horiuchi, T., Jpn. J. Appl. Phys., Pt. 1 37, 1809 (1998).Google Scholar
3. Labelle, C. B., Gleason, K. K., Limb, S. J., Bums, A. J., Mater. Res. Soc. Symp. Proc. 443, 189 (1997).Google Scholar
4. Ratner, B. D., Chikoti, A., Lopez, G. P., Plasma Deposition and Treatment for Biomedical Applications. In Plasma Deposition, Treatment, and Etching of Polymers; d'Agostino, R., Ed.; (Academic Press: San Diego, 1990), p 463.Google Scholar
5. Panchalingam, V., Poon, B.;, Huo, H. H., Savage, C. R., Timmons, R. B., Eberhart, R. C., J. Biomater. Sci. Polymer Edn. 5, 131 (1993).Google Scholar
6. Limb, S. J., Gleason, K. K., Edell, D. J., Gleason, E. F., J. Vac. Sci. Technol. A 15, 1814 (1996).Google Scholar
7. Booth, J. P., Hancock, G., Perry, N. D., Toogood, M. J., J. Appl. Phys. 66, 5251 (1989).Google Scholar
8. Labelle, C. B., Limb, S. J., Gleason, K. K., J. Appl. Phys., 82, 1784 (1997).Google Scholar
9. Labelle, C. B., Gleason, K. K., Environmental, Safety and Health Issues Associated With Low Dielectric Constant Films Grown By Chemical Vapor Deposition. In 193rd Meeting of The Electrochemical Society, San Diego, CA, May 3-8, 1998.Google Scholar
10. Savage, C. R., , R. B. Timmons, Chem. Mater., 3, 575 (1991).Google Scholar
11. Savage, C. R., Timmons, R. B., Lin, J. W., Spectroscopic Characterization of Films Obtained in Pulsed Radio-Frequency Plasma Discharges of Fluorocarbon Monomers. In Advances in Chemistry Series; American Chemical Society: Washington, DC, 1993; Vol.236, p 745.Google Scholar
12. Wang, J.-H., Chen, J.-J., Timmons, R. B., Chem. Mater. 8, 2212 (1996).Google Scholar
13. Limb, S. J., Edell, D. J., Gleason, E. F., Gleason, K. K., J. Appl. Polym. Sci. 67, 1489 (1998).Google Scholar
14. Limb, S. J., Labelle, C. B., Gleason, K. K., Edell, D. J., Gleason, E. F., Appl. Phys. Lett. 68, 2810 (1996).Google Scholar
15. Yasuda, H., Plasma Polymerization(Academic Press: Orlando, FL, 1985).Google Scholar
16. Plasma Deposition, Treatment, and Etching of Polymers; d'Agostino, R., Ed. (Academic Press: San Diego, 1990).Google Scholar
17. Lau, K. K. S., Gleason, K. K., J. Phys. Chem. B, 101, 6839 (1997).Google Scholar
18. Lau, K. K. S., Gleason, K. K., J. Phys. Chem. B, 102, 5977 (1998).Google Scholar
19. Lau, K. K. S., Gleason, K. K., J. Electrochem. Soc. (submitted).Google Scholar
20. Dixon, W. T., J. Chem. Phys., 77, 1800 (1982).Google Scholar
21. Miller, J. M., Prog. NMR Spectrosc. 28,255 (1996).Google Scholar
22. Harris, R. K., Jackson, P., Chem. Rev. 91, 1427 (1991).Google Scholar
23. Dec, S. F., Wind, R. A., Maciel, G. E., Macromolecules 20, 2754 (1987).Google Scholar
24. Katoh, E., Hiromi, S., Kita, Y., Ando, I., J. Mol. Struct. 355, 21 (1995).Google Scholar
25. Tonelli, C., Tortelli, V., J. Fluorine Chem. 67, 125 (1994).Google Scholar
26. Emsley, J. W., Phillips, L., Prog. NMR Spectrosc. 7, 1 (1971).Google Scholar
27. Tortelli, V., Tonelli, C., Corvaja, C., J. Fluorine Chem. 60, 165 (1993).Google Scholar
28. English, A. D., Garza, O. T., Macromolecules 12, 351 (1979).Google Scholar
29. Limb, S. J., Ph.D. Thesis, Massachusetts Institute of Technology, 1997.Google Scholar
30. Mahler, W., Resnick, R. R., J. Fluorine Chem., 3, 451 (1973).Google Scholar
31. Sargeant, P. B., J. Org. Chem. 35, 678 (1970).Google Scholar
32. Knickelbein, M. B., Webb, D. A., Grant, E. R., (Mater. Res. Soc. Symp. Proc. 38, 1985) p. 23.Google Scholar
33. Labelle, C. B., Karecki, S. M., Reif, R. L., Gleason, K. K.,. J. Vac. Sci. Technol. A (submitted).Google Scholar
34. Ishikawa, N., Maruta, M., Nippon Kagaku Kaishi 10, 1411 (1997).Google Scholar
35. Ovenall, D. W., J.J. Chang,. J. Magn. Reson. 25, 361 (1997).Google Scholar
36. Kaplan, S., Dilks, A., J. Appl. Polym. Sci.: Appl. Polym. Symp. 38, 105 (1984).Google Scholar
37. Mallouk, T., Hawkins, B. L., Conrad, M. P., Zilm, K., Maciel, G.E., Bartlett, N., Phil. Trans. R. Soc. Lond. A 314, 179 (1985).Google Scholar
38. Schwerk, U., Engelke, F., Kleber, R., Michel, D., Thin Solid Films 230, 102 (1993).Google Scholar
39. Hagaman, E. W., Murray, D. K., Cul, G. D. Del, Energy Fuels 12, 399 (1998).Google Scholar
40. Kay, E., Coburn, J., Dilks, A., Plasma Chemistry of Fluorocarbons as Related to Plasma Etching and Plasma Polymerization. In Topics in Current Chemistry; Veprek, S., Venugopalan, M., Eds. (Springer-Verlag: Berlin, 1980) 94, p 1.Google Scholar
41. Burgess, D. R. J., Zachariah, M. R., Tsang, W., Westmoreland, P. R., Prog. Energy Combust. Sci. 21, 453 (1996).Google Scholar
42. Millauer, H., Schwertfeger, W., Siegemund, G., Angew. Chem. Int. Ed. Engl. 24, 161 (1985).Google Scholar