Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:04:16.242Z Has data issue: false hasContentIssue false

Low Temperature Annealing of LPCVD Silicon Films

Published online by Cambridge University Press:  22 February 2011

T. Aoyama
Affiliation:
Hitachi Research Laboratory, 4026 Kuji-cho, Hitachi, Ibaraki 319–2 Japan
N. Konishi
Affiliation:
Hitachi Research Laboratory, 4026 Kuji-cho, Hitachi, Ibaraki 319–2 Japan
T. Suzuki
Affiliation:
Hitachi Research Laboratory, 4026 Kuji-cho, Hitachi, Ibaraki 319–2 Japan
K. Miyata
Affiliation:
Hitachi Research Laboratory, 4026 Kuji-cho, Hitachi, Ibaraki 319–2 Japan
Get access

Abstract

Low temperature, 600°C annealing of LPCVD films was investigated by x-ray diffraction, ESR, TEM, and carrier mobility measurements. An optimum deposition temperature of about 550°C was found to yield good crystallinity and large electron mobility for annealed films; large grain sizes, a maximum crystallite size, and a maximum electron spin density were also observed for films deposited at the optimum temperature. Electron spin density for as-deposited films correlated with the crystalline volume by x-ray diffraction measurements on the films after annealing. This implys that only those amorphous components with high electron spin density can be converted into the crystalline phase by 600°C annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Morozumi, S., Electrochem. Soc. Ext. Abst., 852, 626 (1985)Google Scholar
(2) Ohwada, J., Takabatake, M., Kawakami, H., Ono, Y., Mimura, A., Ono, K., Konishi, N., Suzuki, T., and Miyata, K., Ext. Abs. 19th Conf. Solid State Dev. and Mat., Tokyo, 1987, pp55 Google Scholar
(3) Kamins, T. I., J. Electrochem. Soc., 127, 686 (1980)Google Scholar
(4) Harbeke, G., Krausbauer, L., Steigmer, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., J. Electrochem. Soc., 131, 675 (1984)Google Scholar
(5) Yoon, H. S., Park, C. S., and Park, S. C., J. Vac. Sci. Tech. A4, Nov/Dec, 3095 (1986)CrossRefGoogle Scholar
(6) Bisaro, R., Magarino, J., and Proust, N., J. AppI. Phys. 59, 1167 (1986)Google Scholar
(7) Narayan, J., J. AppI. Phys. 53, 8607 (1982)Google Scholar
(8) Germain, P. J., Paesler, M. A., and Sayers, D. E., Mat. Res. Soc. Symp. Proc., 13, 135 (1983)CrossRefGoogle Scholar
(9) Bisaro, R., Magarino, J., Zellama, K., Squelard, S., Germain, P., and Morhange, J. F., Phys. Rev. B 31, 3568 (1985)Google Scholar
(10) Kamins, T. I.. J. AppI. Phys., 42, 4357 (1971)CrossRefGoogle Scholar
(11) Seto, J. Y. W., J. AppI. Phys., 46, 5247 (1975)CrossRefGoogle Scholar
(12) Kumar, K., Khondker, A. N., Ahmed, S. S., and Shah, R. R., IEEE Trans. Elect. Dev. ED-31, 480 (1984)Google Scholar
(13) Morozumi, S., Arai, R., Ohshima, H., Matsuo, M., Nakagawa, T., and Sato, T., Tech. Digest Japan Display ‘87, pp 196 Google Scholar
(14) Kung, K. T. Y. and Reif, R., J. Appl. Phys. 62, 1503 (1987)Google Scholar
(15) Hatalis, M. H. and Greve, D. W., IEEE Elect. Dev. Lett. EDL-8, 361 (1987)CrossRefGoogle Scholar
(16) Klung, H. P. and Alexander, L. E., X-ray Diffraction Procedure, John Wiley & Sons, New York (1959)Google Scholar
(17) Paul, W. and Anderson, D. A., Solar Energy Mat., 5, 229 (1981)Google Scholar