Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T03:44:54.905Z Has data issue: false hasContentIssue false

Low Temperature Growth Mechanism of GaN Crystal by Hydride Vapor Phase Epitaxy

Published online by Cambridge University Press:  01 February 2011

Hai-Ping Liu
Affiliation:
Department of Material Science and Engineering, National Cheng-Kung University, Tainan, Taiwan, ROC
In-Gann Chen*
Affiliation:
Department of Material Science and Engineering, National Cheng-Kung University, Tainan, Taiwan, ROC
Jenq-Dar Tsay
Affiliation:
Opto-Electronics & System Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
Wen-Yueh Liu
Affiliation:
Opto-Electronics & System Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
Yih-Der Guo
Affiliation:
Opto-Electronics & System Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
Jung Tsung Hsu
Affiliation:
Opto-Electronics & System Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
*
*Corresponding author
Get access

Abstract

The low temperature growth of GaN crystal using epitaxy lateral overgrowth (ELO) on SiO2 dot pattern below 900°C by hydride vapor phase epitaxy (HVPE) have been studied. It is observed that the growth rate of GaN hexagonal pyramidal crystals along [1101] direction increases as growth temperature decreases. At low temperature of ∼ 850°C, hexagonal GaN columnar crystals with high index facet at the top can be observed. It is proposed that the surface diffusion length of precursors, such as NH3 and GaCl, decreases at lower temperature that reduces the probability of desorption and increase the lifetime. The condensation of Ga liquid droplets on the GaN surface will change the relative stability of {1101} facet. Therefore, the formation of high index planes such as {2122} facet on the top of hexagonal column along with the formation of stacking fault on the (0001) plane can be observed. A detailed study of the effect of growth temperature on the crystal growth mechanism will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, Shuji, Senoh, Masayuki, Iwasa, Naruhito, and Nagahama, Shin-ichi, Appl. Phys. Lett. 67, 1868 (1995)Google Scholar
2. Nakamura, Shuji, Senoh, Masayuki, Nagahama, Shin-ichi, Iwasa, Naruhito, Yamada, Takao, Matsushita, Toshio, Sugimoto, Yasunobu, and Kiyoku, Hiroyuki et al. Appl. Phys. Lett. 70, 868 (1997)Google Scholar
3. Vennegues, P., Beaumont, B., Bousquet, V., Vaille, M., and Gibart, P., J. Appl. phys. 87, 4175 (2000)Google Scholar
4. Kuan, T. S., Inoki, C. K., Hsu, Y., Harris, D. L., Zhang, R., Gu, S., and Kuech, T. F., Mat. Res. Soc. Sym. Proc, 595, w2.6.16 Google Scholar
5. Crzeogry, Izabella, J. Phys: Condens. Matter 13 6875 (2001)Google Scholar
6. Fareed, R.S. Qhalid, Tottori, S., Nishino, K., Sakai, S., J.Cryst. Growth 200, 348 (1999)Google Scholar
7. Kelly, Michael K., Vaudo, Robert P., Phanse, Vivek M., Görgens, Lutz, Ambacher, Oliver and Stutzmann, Martin, Jpn. J. Appl. Phys 38, L217 (1999)Google Scholar
8. Park, Sung S., II-V. Park and Choh, Sung H., Jpn. J. Appl. Phs 39, L1141 (2000)Google Scholar
9. Motoki, Kensaku, Okahisa, Takuji, Matsumoto, Naoki, Matsushima, Masato, Kimura, Hiroya, Kasai, Hitoshi, Takemoto, Kikurou, Uematsu, Koji, Hirano, Tetsuya, Nakayama, Masahiro, Nakahata, Seiji, Ueno, Masaki, hara, Daijirou, Kumagai, Yoshinao, Koukitu, Akinori and Seki, Hisashi, Jpn. J. Appl. Phs 40, L140 (2001)Google Scholar
10. Paskova, T., Svedberg, E.B., Madsen, L.D., Yakimova, R., Ivanov, I.G., Henry, A. and Monemar, B., MRS Internet J. Nitride Semicond. Res. 4S1, G3.16 (1999)Google Scholar
11. Kobayahi, Naoki, J. Cryst. Growh 195, 228 (1998)Google Scholar
12. Hiramatsu, K.., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y. and Maeda, T., Phys. Status Solidi (a) 176, 535 (1999)Google Scholar
13. Koleske, D. D., Wickenden, A. E., Henry, R. L., DeSisto, W. J., and Gorman, R. J., J. Appl. Phys. 84, 1998 (1998)Google Scholar
14. Wagner, V., Parillaud, O., Buühlmann, H. J., Ilegems, M., Gradecak, S., Stadelmann, P., Riemann, T. and Christen, J., J. Appl. Phys. 92, 1307 (2002).Google Scholar
15.Rates of Phase Transformations” edited by Doremus, R.H., 1985, academic press, pp.106108 Google Scholar