Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:04:26.911Z Has data issue: false hasContentIssue false

Low Temperature Hydrogen Induced Degradation of (Ba,Sr)TiO3 Thin Film Capacitors

Published online by Cambridge University Press:  10 February 2011

J. D. Baniecki
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, 1580 Route 52, Hopewell Junction, NY 12533
C. Parks
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, 1580 Route 52, Hopewell Junction, NY 12533
R. B. Laibowitz
Affiliation:
IBM Research Div, Yorktown Heights, NY 10598
T. M. Shaw
Affiliation:
IBM Research Div, Yorktown Heights, NY 10598
J. Lian
Affiliation:
Inf'meon Technologies, 1580 Route 52, Hopewell Junction, NY 12533
G. Costrini
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, 1580 Route 52, Hopewell Junction, NY 12533
Get access

Abstract

We have used electrical characterization and secondary ion mass spectroscopy (SIMS) to investigate the influence of hydrogen or deuterium (H/D) on the degradation of the electrical properties of metal/Ba0.7Sr0.3TiO3/metal (M/BSTO/M) thin film capacitors after forming gas annealing (FGA). Leakage and dielectric relaxation currents increase after FGA at temperatures as low as 23C. SIMS profiling shows that at 23C H/D diffuses through thin film metal electrodes and accumulates at electrode interfaces. The location (top or bottom electrode interface) of H/D accumulation is dependent on the type of electrodes and capacitor structure. The resulting asymmetric distribution of H/D leads to large voltage offsets in the C-V characteristic, asymmetric leakage currents, and increased dielectric relaxation currents. Possible mechanisms for increased leakage and relaxation currents after FGA are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kushida-Abdeighafar, K., Mild, H., Torii, K., Fujisaki, Y., Appl. Phys. Lett., Vol. 69, 3188 (1996)Google Scholar
[2] Fujisaki, Y., Kushida-Abdelghafar, K., Shimrnamoto, Y., Miki, H., J. Appl. Phys. Vol. 82, 341 (1997)Google Scholar
[3] Han, J. P., Ma, T. P., Integrated Ferroelectrics, Vol. 17, 471 (1997)Google Scholar
[4] Gilbert, S. R., Colombo, L., Moise, T. S., Chen, P., Summerfelt, S. R., Okuno, Y., Presented at the Intl. Symp. on Int. Ferro., Colorado Springs, CO, March (1999) (unpublished)Google Scholar
[5] Banmecki, J. D. Laibowitz, R. B., Shaw, T. M., Saenger, K. L., Duncombe, P. R., Cabral, C. Kotecki, D. E. Shen, H. and Lian, J. Ma, Q. Y., J. European Ceramic Society Vol. 19, Issue 6–7, 1457 (1999)Google Scholar
[6] Buskirk, P. C. Van, Bilodeau, S. M., Roeder, J. F., Kirlin, P. S., Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes (Japan) Vol. 35, No. 4B, 2520 (1996)Google Scholar
[7] Dietz, G. W., Schumacher, M., Waser, R., Streiffer, S. K., Basceri, C., and Kingon, A. I., J. Appl. Phys., Vol. 82, 2359 (1997)Google Scholar
[8] Yamada, H. and Miller, G. R., J. Solid State Chem., Vol. 6, 169 (1973)Google Scholar
[9] Gilbert, S. R., Tang, S. P., Okuno, Y., Colombo, L., Chen, P., Summerfelt, S. R., Moise, T. S., Presented at the Materials Research Society Meeting, Boston, MA, Fall (1999) (unpublished)Google Scholar
[10] Kröger, F. A. and Vink, H. J., Solid State Physics, Vol. 3, edited by Seitz, F. and Turnbull, D., Academic Press, New York, (1956)Google Scholar
[11] Baniecki, J. D., Parks, C., Laibowitz, R. B., Shaw, T. M., (unpublished)Google Scholar
[12] Tan, O. K., Zhu, W., Tse, M. S., Yao, X., Matls. Sci. and Eng. B58, 221 (1999)Google Scholar
[13] Lundstrom, I., Shivaraman, S., Svensson, C., Lundkvist, L., Appl. Phys. Lett., Vol. 26, 55 (1975)Google Scholar
[14] Kobayashi, H., Kogetsu, Y., Nakato, Y., Surface Science, Vol. 306, 69 (1994)Google Scholar
[15] Christmann, K., Ertl, G., and Pignet, T., Surface Science, Vol. 54, 365 (1976)Google Scholar
[16] Kliem, H., Ferroelectrics, Vol. 202, 39 (1997)Google Scholar