Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T14:02:41.538Z Has data issue: false hasContentIssue false

Low Temperature Oxidation of PTSI on As-Doped Si

Published online by Cambridge University Press:  22 February 2011

J. P. Gambino
Affiliation:
IBM East Fishkill, Hopewell Junction, NY 12533
B. Cunningham
Affiliation:
IBM East Fishkill, Hopewell Junction, NY 12533
F. E. Turene
Affiliation:
IBM East Fishkill, Hopewell Junction, NY 12533
J. F. Shepard
Affiliation:
IBM East Fishkill, Hopewell Junction, NY 12533
Get access

Abstract

PtSi on As-doped polysilicon oxidizes rapidly at temperatures as low as 500 °C. The resulting SiO2-PtSi and PtSi-polysilicon interfaces are very rough. Silicide inclusions are present in the oxide, probably due to differences in oxidation rate between different PtSi grains. The presence of some inclusions near the SiO2 surface suggests that PtSi dissociates during oxidation. Rapid oxidation does not occur for PtSi on B or P-doped polysilicon, or for As concentrations of 1×1020 cm−3 or less.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Katz, L.E., from VLSI Technology, edited by Sze, S.M., (McGraw-Hill Book Co., N.Y., 1983), pp. 145147.Google Scholar
2. Bartur, M. and Nicolet, M-A., J. Electrochem. Soc., 131, 371 (1984).CrossRefGoogle Scholar
3. Liu, R., Murarka, S.P., and Pelleg, J., J. Appl. Phys., 60, 3335 (1986).CrossRefGoogle Scholar
4. Lechaton, J., unpublished data.Google Scholar
5. Gambino, J.P., Monkowski, M.D., Tsang, P.J., Shepard, J.F., Ransom, C.M., and Wong, C.Y., submitted to J. Electrochem. Soc..Google Scholar
6. Grunthaner, F.J., Grunthaner, P.J., Vasquez, R.P., Lewis, B.F., Maserjian, J., and Madhukar, A., Phys. Rev. Lett., 43, 1683 (1979).CrossRefGoogle Scholar
7. The linear rate constant for the oxidation of undoped Si at 600°C is from the data of Goodman, A.M. and Breece, J.M., J. Electrochem. Soc., 117, 982 (1970). The parabolic rate constant was estimated by extrapolating from the high temperature (800–1200°C) data in ref. 8.CrossRefGoogle Scholar
8. Deal, B.E. and Grove, A.S., J. Appl. Phys., 36, 3770 (1965).CrossRefGoogle Scholar
9. Ohkawa, S. and Nakajima, Y., J. Electrochem. Soc., 125, 1997 (1978).CrossRefGoogle Scholar
10. Cros, A., Pollack, R.A., and Tu, K.N., J. Appl. Phys., 57, 2253 (1985).CrossRefGoogle Scholar
11. Hu, S.M., J. Appl. Phys., 55, 4095 (1984).CrossRefGoogle Scholar
12. Ho, C.P. and Plummer, J.D., J. Electrochem. Soc., 126, 1516 (1979).CrossRefGoogle Scholar
13. Frampton, R.D., Irene, E.A., d'Heurle, F.M., J. Appl. Phys., 62, 2972 (1987).CrossRefGoogle Scholar
14. Strydom, W.J., Lombard, J.C., and Pretorius, R., Thin Sol. Films, 131, 215 (1985).CrossRefGoogle Scholar
15. Pretorius, R., J. Electrochem. Soc., 128, 109 (1981).CrossRefGoogle Scholar
16. Irene, E.A. and Dong, D.W., J. Electrochem. Soc., 125, 1146 (1978).CrossRefGoogle Scholar
17. Marcus, R.B., Sheng, T.T., and Lin, P., J. Electrochem. Soc., 129, 1282 (1982).CrossRefGoogle Scholar
18. Lien, C-D., Bartur, M., and Nicolet, M-A., from Thin Films and Interfaces II, edited by Baglin, J.E.E., Campbell, D.R., and Chu, W.K., (Elsevier Science Publishing Co., Inc., N.Y., 1984), p. 51.Google Scholar
19. Nicolet, M-A. and Lau, S.S., from VLSI Microelectronics Science, Vol.6, edited by Einspruch, N.G. and Larrabee, G.B., (Academic Press, N.Y., 1983), pp.453455.Google Scholar