Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T08:56:13.835Z Has data issue: false hasContentIssue false

Low Temperature Photoluminescence and Photoinduced Current Spectroscopy on CdZnTe Grown by High-Pressure Bridgman Technique

Published online by Cambridge University Press:  10 February 2011

A. Zerrai
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
K. Cherkaoui
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
S. Mergui
Affiliation:
Florida International University, Electrical and Computer Engineering Department, CEAS352, Miami, Florida 33199
A. Zumbiehl
Affiliation:
PHASE-CNRS, BP 20, 23, rue du Loess, F-67037 Strasbourg Cedex, France
M. Hage-Ali
Affiliation:
PHASE-CNRS, BP 20, 23, rue du Loess, F-67037 Strasbourg Cedex, France
G. Marrakchi
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
G. Brémond
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA, 20 Av. A. Einstein, 69621 Villeurbanne Cedex, France.
Get access

Abstract

Low temperature photoluminescence (PL), photoinduced current spectroscopy (PICTS) and thermoelectric effect spectroscopy (TEES) measurements have been carried out on several CdZnTe samples, taken from the same ingot, grown by the High Pressure Bridgman Technique. The PL bandgap edge luminescence allowed us to study the quality of the CdZnTe material. We have also determined the zinc segregation through the ingot. A broad luminescence band at lower energies was observed and correlated with PICTS results. The behavior of the defects through the ingot was studied by PICTS. Finally, these results are used to implement the resistivity model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Partovi, A., Millerd, J., Gamire, E., Ziari, M., Steir, W., Triv, R. and Klein, M. B., Appl. Phys. Lett. 57, 846(1990).Google Scholar
[2] Semiconductors for Room Temperature Nuclear Detector Application. Eds. Schlesinger, T.E. and James, R.B., Semiconductors and semimetals, Vol. 43, Academic Press, San Diego, (1995).Google Scholar
[3] Raiskin, E. and Butler, J.F., IEEE Trans. Nucl. Sci. 35, n°1, p. 81 (1988).Google Scholar
[4] Mayer, J.W., in: Semiconductor Detectors, eds. Bertolini, G. and Coche, A., North-Holland, Amsterdam, p.445498, (1968).Google Scholar
[5] Hjelt, K., Juvonen, M., Tuomi, T., Nenonen, S., Eissler, E.E., Bavdaz, M., phys. Stat, sol (a), 162 747 (1997).Google Scholar
[6] Rablau, C.I., Setzler, S.D., Halliburton, L.E., Gilles, N.C., Doty, F.P., J. Elect. Mat. 27, 813(1998).Google Scholar
[7] Chen, H., Tong, J., Hu, Z., Shi, D.T., Wu, G.H., Chen, K.T., George, M.A., Collins, W.E., Burger, A., J. Appl. Phys. 80, 3509(1996).Google Scholar
[8] Cherkaoui, K. Thesis INSA Lyon (1998).Google Scholar
[9] Fougerès, P., private communication (1999).Google Scholar
[10] Castaldini, A., Cavallini, A., Fraboni, B., Polenta, L., Phys. Rev. B 54, 7622(1996).Google Scholar
[11] Zumbiehl, A., P. Fougerès, M. Hage-Ali, J.M. koebel Siffert, P., Zerrai, A., Cherkaoui, K., Marrakchi, G., Bremond, G., J. Cryst. Growth. 197, 670(1999).Google Scholar