Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T04:14:41.433Z Has data issue: false hasContentIssue false

Low Temperature Process Technologies for the Next Generation High Performance Polycrystalline Silicon Thin-Film Transistors

Published online by Cambridge University Press:  17 March 2011

Seiichiro Higashi
Affiliation:
Base Technology Research Center, Seiko Epson Corp. Nagano, 392-8502, JAPAN
Daisuke Abe
Affiliation:
Base Technology Research Center, Seiko Epson Corp. Nagano, 392-8502, JAPAN
Satoshi Inoue
Affiliation:
Base Technology Research Center, Seiko Epson Corp. Nagano, 392-8502, JAPAN
Tatsuya Shimoda
Affiliation:
Base Technology Research Center, Seiko Epson Corp. Nagano, 392-8502, JAPAN
Get access

Abstract

Low temperature process technologies for high performance polycrystalline silicon (poly-Si) thin-film transistors (TFTs) are discussed based on the investigations of pulsed laser crystallization, plasma treatment of poly-Si films, and SiO2/Si interface formation. Although highdensity (∼1018 cm−3) trap states localized at grain boundaries are introduced to the poly-Si films by laser crystallization, they are efficiently decreased to the order of 1016 cm−3 by following hydrogen plasma treatment. It is also shown that high quality SiO2/Si interfaces with the density of interface trap states (Dit) in the order of 1010 cm−2eV−1 are achieved using electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD). By applying these low temperature process technologies to the fabrication process, high performance poly-Si TFTs with high n-channel mobility μn) of 187 cm2V−1s−1, low threshold voltage (Vth) of 1.97 V and small subthreshold swing (S) of 210 mV/dec. were obtained. These results indicate that the development of low temperature process technologies that can control trap states is the key to the next generation high performance poly-Si TFTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakajima, Y., Goto, N., Kataoka, H. and Maekawa, T, Digest of Technical Papers, 2000 IEEE International Solid-State Circuits Conference, 43, 188 (2000).Google Scholar
2. Higuchi, T., Hanari, J., Nakamura, N., Mametsuka, K., Watanabe, M., Murai, T., Watanabe, R., Seiki, M. Azuma, R., Hori, Y., Nakamura, K., Aoki, Y., Sakurai, H., Nakazono, T. and Harada, N. in Digest of Technical Papers, 2000 Society for Information Display International Symposium, (2000) 1121.Google Scholar
3. Kimura, M., Nozawa, R., Maeda, H., Matsueda, Y., Inoue, S., Miyashita, S., Shimoda, T., Ohshima, H., Tam, S.W.B., Migliorato, P., Burroughes, J.H., Towns, C.R. and Friend, R.H. in Active-Matrix Liquid-Crystal Displays 2000, (Tokyo Japan, 2000) p245.Google Scholar
4. Young, N. D., Harkin, G., Bunn, R. M., McCulloch, D. J., Wilks, R. W. and Knapp, A. G., IEEE Electron Device Lett. 18, 19 (1997).Google Scholar
5. Young, N. D., Harkin, G., Bunn, R. M., McCulloch, D. J. and French, I. D., IEEE Trans. Elec. Dev.: 43 (11), 1930 (1996).Google Scholar
6. Fortunato, G. and Migliorato, P.: Appl. Phys. Lett. 49, 1025 (1986).Google Scholar
7. Fortunato, G., Meakin, D. B., Migliorato, P. and LeComper, P. G.: Philos. Mag. B57, 573 (1988).Google Scholar
8. Dimitriadis, C. A., Brini, J., Kamarinos, G., Gueorguiev, V. K. and Ivanov, Tz. E.: J. Appl. Phys. 83, 2709 (1994).Google Scholar
9. Ayers, J. R.: J. Appl. Phys. 74, 1787 (1993).Google Scholar
10. Migliorato, P. and Meakin, D. B.: Appl. Surf. Sci. 30, 353 (1987).Google Scholar
11. Dimitriadis, C. A., Tassis, D. H., Economou, N. A. and Giakoumakis, G.: Appl. Phys. Lett. 64, 2709 (1994).Google Scholar
12. Sze, S. M.: Physics of Semiconductor Devices John Wieley & Sons (1981) 469.Google Scholar
13. Noguchi, T.: Jpn. J. Appl. Phys. 32, L1584 (1993).Google Scholar
14. Higashi, S. and Sameshima, T.: Jpn. J. Appl. Phys. 40, 480 (2001).Google Scholar
15. Higashi, S., Ozaki, K., Sakamoto, K., Kano, Y. and Sameshima, T.: Jpn. J. Appl. Phys. 38, L857 (1999).Google Scholar
16. Higashi, S.: Proc. of International Workshop on Active-Matrix Liquid-Crystal Displays (Tokyo Japan, 1999) p225.Google Scholar
17. Sakamoto, K., Sameshima, T., Tsunoda, Y. and Higashi, S.: Proc. of International Workshop on Active-Matrix Liquid-Crystal Displays (Tokyo Japan, 1999) p131.Google Scholar
18. Higashi, S., Abe, D., Inoue, S. and Shimoda, T.: to be published in Jpn. J. Appl. Phys. 40 (2001).Google Scholar
19. Sano, N., Sekiya, M., Hara, M., Kohno, A. and Sameshima, T.: Appl. Phys. Lett. 66, 2107 (1995).Google Scholar