Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T08:35:07.976Z Has data issue: false hasContentIssue false

Low-Temperature Solvothermal Route to GaN Nanoparticles

Published online by Cambridge University Press:  21 March 2011

Jianjun Wang
Affiliation:
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294
Luke Grocholl
Affiliation:
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294
Edward G. Gillan
Affiliation:
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294
Get access

Abstract

We report a straightforward, non-aqueous solvothermal method for the production of nanoscale gallium nitride structures. Nanoparticles with spherical and rod-like morphologies are produced via in situ gallium azide precursor synthesis and decomposition in superheated toluene or THF. The solution reaction between gallium chloride and sodium azide produces an insoluble azide precursor that is then solvothermally decomposed to GaN at temperatures below 260 °C. The resulting products are poorly crystalline but thermally stable and crystallize to hexagonal GaN upon annealing at 750 °C. Product morphologies include spherical particles (ca. 50 nm) and nanorods. Upon annealing, the nanoparticles coalesce into larger organized crystalline structures with hexagonal facets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) (a) Matsuoka, T. Adv. Mater. 1996, 8, 469.Google Scholar
(b) Morkoc, H.; Mohammad, S. N. Science 1995, 267, 51.Google Scholar
(2) Nakamura, S.; Mukai, T.; Senoh, M.; Nagahama, S.; Iwasa, N. J. Appl. Phys. 1993, 74, 3911.Google Scholar
(3) Karpinski, J.; Jun, J.; Porowski, S. J. Cryst. Growth 1984, 66, 1.Google Scholar
(4) Yamane, H.; Shimada, M.; Clarke, S. J.; DiSalvo, F. J. Chem. Mater. 1997, 9, 413.Google Scholar
(5) (a) Duan, X.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 188.Google Scholar
(b) Chen, C.-C.; Yeh, C.-C. Adv. Mater. 2000, 12, 738.Google Scholar
(6) Wallace, C. H.; Reynolds, T. K.; Kaner, R. B. Chem. Mater. 1999, 11, 2299.Google Scholar
(7) Janik, J. F.; Wells, R. L.; Coffer, J. L.; St. John, J. V.; Pennington, W. T.; Schimek, G. L. Chem. Mater. 1998, 10, 1613.Google Scholar
(8) Hwang, J -W; Campbell, J. P.; Kozubowski, ; Hanson, S. A; Evans, J. F.; Gladfelter, W. L. Chem. Mater. 1995, 7, 517.Google Scholar
(9) (a) Frank, A.; Stowasser, F.; Sussek, H.; Pritzkow, H.; Miskys, C. R.; Ambacher, O.; Giersig, M.; Fischer, R. J. Am. Chem. Soc. 1998, 120, 3512.Google Scholar
(b) Manz, A.; Birkner, A.; Kolbe, M.; Fisher, R. Adv. Mater. 2000, 12, 569.Google Scholar
(10) (a) Yang, J.; Zeng, J. -H.; Yu, S. -H.; Yang, L.; Zhou, G. -E.; Qian, Y. -T. Chem. Mater. 2000, 12, 3259.Google Scholar
(b) Jiang, Y.; Wu, Y.; Mo, X.; Yu, W.; Xie, Y.; Qian, Y. Inorg. Chem. 2000, 39, 2964.Google Scholar
(c) Hollingsworth, J. A.; Poojary, D. M.; Clearfield, A.; Buhro, W. E. J. Am. Chem. Soc. 2000, 122, 3562.Google Scholar
(11) Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science 1995, 270, 1791.Google Scholar
(12) Xie, Y.; Qian, Y.; Wang, W.; Zhang, S.; Zhang, Y. Science 1996, 272, 1926 Google Scholar
(13) (a) Purdy, A. P. Chem. Mater. 1999, 11, 1648.Google Scholar
(b) Jegier, J.; McKernan, S.; Purdy, A. P.; Gladfelter, W. L. Chem. Mater. 2000, 12, 1003.Google Scholar
(14) Micic, O. I.; Ahrenkiel, S. P.; Bertram, D.; Nozik, A. J. Appl. Phys. Lett. 1999, 75, 478.Google Scholar
(15) (a) Gillan, E. G.; Kaner, R. B. Inorg. Chem. 1994, 33, 5693.Google Scholar
(b) Hector, A. L.; Parkin, I. P. Polyhedron 1995, 14, 913.Google Scholar
(16) Orton, J. W.; Foxon, C. T. Rep. Prog. Phys. 1998, 61, 1.Google Scholar
(17) GaN elem. anal. wt % (calc. for GaN): C 14.08 (0), H 1.55 (0), N 18.54 (16.7), Cl 1.55 (0).Google Scholar
(18) Strite, S.; Morkoc, H. J. Vac. Soc. Technol. B. 1992, 10, 1237.Google Scholar