Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T10:11:55.534Z Has data issue: false hasContentIssue false

Luminescence Characterization and Application of Diamond

Published online by Cambridge University Press:  10 February 2011

A. M. Zaitsev
Affiliation:
LGBE, Fern Universität Hagen, Haldener Str. 182, 58084 Hagen, GERMANY
A. A. Melnikov
Affiliation:
HEII&FD Laboratory, Belarussian State University, Pr. Skorina 4, 220080 Minsk, BELARUS
A. V. Denisenko
Affiliation:
LGBE, Fern Universität Hagen, Haldener Str. 182, 58084 Hagen, GERMANY HEII&FD Laboratory, Belarussian State University, Pr. Skorina 4, 220080 Minsk, BELARUS
V. S. Varichenko
Affiliation:
LGBE, Fern Universität Hagen, Haldener Str. 182, 58084 Hagen, GERMANY
R. Job
Affiliation:
LGBE, Fern Universität Hagen, Haldener Str. 182, 58084 Hagen, GERMANY
W. R. Fahrner
Affiliation:
LGBE, Fern Universität Hagen, Haldener Str. 182, 58084 Hagen, GERMANY
Get access

Abstract

The main advantages of stationary luminescence as a characterization technique of diamond are its relatively simple technical realization and a wide information gained on the impuritydefect structure of crystal. The physical reasons of capability of luminescence come from a very high Debye temperature of the diamond crystal, a strong interatomic bonding, and a relatively weak electron-phonon coupling in optical centers. As a result, a majority of optical centers in diamond possess the luminescence spectra with well resolved zero-phonon lines assisted by vibration-related replica, many of them retaining this spectral structure to room temperature and even above. As zero-phonon line spectrum is normally very sensitive to any external forces applied to the crystal (temperature, mechanical stress, magnetic and electrical fields), the optical centers can serve as sensitive markers, providing much information on the state of the didmond lattice surrounding them.

The value of the luminescence increases when diamond is characterized as a material for electronic and, particularly, optoelectronic applications. In this area luminescence really proves to be a unique characterization tool giving a direct information on optical and electronic properties (for instance, impurity and defect content, lifetime of charge carriers, efficiency of radiative recombination etc.), to be used in the devices.

In this review the basic parameters of the luminescence centers of diamond are considered and discussed from the view-point of the information they provide. Cathodoluminescence of diamond films and ion implanted layers is given as an example of luminescent characterization of diamond. The semiconducting structures with insulating active zones are discussed as a promising application of diamond for light emitting devices operating at high temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mohammed, K., Davies, G. and Collins, A. T., J. Phys. C. 15, p. 27892800 (1982).Google Scholar
2. Davies, G., J. Phys. C. 7, p. 37973809 (1974).Google Scholar
3. Dean, P. J. and Male, J. C., Proc. R. Soc. London A 277, p. 330347 (1964).Google Scholar
4. Crowther, P. A. and Dean, P. J., J. Phys. Chem. Solids 28, p. 11151136 (1967).Google Scholar
5. Lowson, S. C., Davies, G., Collins, A. T. and Mainwood, A., J. Phys. C 4, p. 34393452 (1992).Google Scholar
6. Pereira, M. E., Barradas, M. I. and Thomaz, M. F., J. Phys. C 20, p. 49234932 (1987).Google Scholar
7. Pereira, E., Isabel, M. and Jorge, B., Solid State Communic. 61, p. 7578 (1987).Google Scholar
8. Davies, G. and Nazare, M. H., J. Phys. C 13, p. 41274136 (1980).Google Scholar
9. Davies, G., J. Phys. C 12, p. 25512566 (1979).Google Scholar
10. Zaitsev, A. M., Luminescence of Ion Implanted Diamond and Cubic Boron Nitride, Dr. Sc. Thesis, University of Minsk, 367 p (1992) (in Russian).Google Scholar
11. Collins, A. T. and Mohammed, K., J. Phys. C 15, p. 147158 (1982).Google Scholar
12. Nazare, M. H., Neves, A. J. and Davies, G. in Diamond. Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., Fujimori, N. (Mat. Res. Symp. Proc. 162, Pittsburgh, PA 1990), p. 249254.Google Scholar
13. Sa, E. S. de and Davies, G., Proc. R. Soc. London 357, p. 231251 (1977).Google Scholar
14. Collins, A. T. and Spear, P. M., J. Phys. C 19, p. 68456858 (1986).Google Scholar
15. Varichenko, V. S., Didyk, A. Ju., Zaitsev, A. M., Kuznetsov, V. I., Kulakov, V. N. and Melnikov, A. A., Defect Production in Diamond by High Energy Ion Implantation, Preprint JINR (Dubna) R14–88-44 (1988) 12 p (in Russian).Google Scholar
16. Varichenko, V. S., Vorobiev, E. D., Zaitsev, A. M., Laptev, V. A., Samoilovich, M. I., Skuratov, V. A. and Stelmakh, V. F., Sov. Phys. Semicond. 21, p. 668671 (1987).Google Scholar
17. Gorokhovsky, A. A., Turukhin, A. V., Alfano, R. R. and Phillips, W., Appl. Phys. Letters 66, p. 4345 (1995).Google Scholar
18. Collins, A. T., Davies, G. and Woods, G. S., J. Phys. C 19, p. 39333944 (1986).Google Scholar
19. Walker, J., Rep. Prog. Phys. 42, p. 16051659 (1979).Google Scholar
20. Mainwood, A., Collins, A. T. and Woad, P., Mater. Sci. Forum 143/147, p. 2934 (1994).Google Scholar
21. Davies, G. (ed.), Properties and Growth of Diamond, INSPEC, London, UK, (1994).Google Scholar
22. Collins, A. T., Woad, P. J., Woods, G. S. and Kanda, H., Diamond and Related Mater. 2, p. 136141 (1993).Google Scholar
23. Collins, A. T., Lawson, S. C., Davies, G. and Kanda, H., Phys. Rev. Letters 65, p. 891894 (1990).Google Scholar
24. Burchard, B., Denisenko, A., Fahrner, W. R., Melnikov, A. A., Varichenko, V. S. and Zaitsev, A. M., Diamond Diode Structure, U. S. Patent Application Serial No. 08/275,942.Google Scholar
25. Melnikov, A. A., Denisenko, A. V., Zaitsev, A. M., Fahrner, W. R. and Varichenko, V. S. in Applications of Diamond Films and Related Materials, edited by Feldman, A., Tzeng, Y., Yarbrough, W. A, Yoshikawa, M. and Murakawa, M. (NIST Special Publication 885, Gaithersburg, MD 1995), p. 639642.Google Scholar