Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T09:52:13.700Z Has data issue: false hasContentIssue false

Luminescence of Rare Earth Doped Si/ZrO2 Co-Sputtered Films

Published online by Cambridge University Press:  01 February 2011

C. Rozo
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
L. F. Fonseca
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
O. Resto
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
S. Z. Weisz
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
Get access

Abstract

Er3+, Nd3+ and Tm3+ doped Si/ZrO2 thin films have been prepared by rf co-sputtering. The films are 5 inches long and divided into 50 sections or positions, labeled from P1 to P50. The target configuration is such that the main target is ZrO2 (181.46 cm2), the rare earth (RE) oxide pellet (1.43 cm2) is placed on the main target below the middle of section of the film and the Si chip (6.67 cm2 or 6.00 cm2) is placed on the main target below one end of the film (P40 to P50). The films were annealed to 700°C. The Er3+4I13/24I15/2 emission was detected but no 4I13/24I15/2 emission was detected. The 4I13/24I15/2 emission shows a narrow peak at 1527 nm (FWHM = 6.5 nm for P20) with two weaker side bands from 1430 nm to 1500 nm and from 1550 nm to 1600 nm. The Nd3+4F3/24I9/2, 4F3/24I11/2, and 4F3/24I13/2 emissions were detected being the 4F3/24I11/2 peaked at 1065 nm (FWHM = 39.5 nm for P30) the strongest. The 4F3/24I9/2 emission is relatively weak, less than one-fourth the peak intensity of the 4F3/24I1/2 emission but is broad (FWHM = 92 nm for P30). No Er3+4I13/24I15/2 emission or Nd3+4F3/2 emissions were detected for the Si rich ends of the respective films, being the emission stronger from the Si poor end of the film towards the middle of the film. The maximum Er3+4I13/24I15/2 emission is for P20 and the maximum peak intensity for the Nd3+4F3/24I11/2 emission is for P30. The excitation wavelength dependence behavior for the Nd3+4F3/24I11/2 emission is that typical of energy transfer from the Si nanoparticles to the emitting Nd3+ ions. The excitation wavelength behavior for the Er3+4I13/24I13/2 emission reflects a mix of energy transfer from the Si nanoparticles and strong absorption for excitation wavelengths of 488.0 nm and 514.5 nm. The Tm3+ doped Si/ZrO2 thin film does not exhibit infrared (IR) PL from the 3H4 emission or the 3F43H6 emission. The intense band from 500 nm to 800 nm observed for all of the RE doped Si/ZrO2 films, due to defects in ZrO2, barely permits the detection of the Tm3+3H43H6 emission which is best observed for P35.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harrison, H. D. E., McLamed, N T., Subbarao, E. C., J. Electrochem. Soc. 110, 23 (1963).Google Scholar
2. MRS Bulletin 27, no. 3, (2002).Google Scholar
3. Maeda, N., Wada, N., Onoda, H., Maegawa, A., Kojima, K., Thin Solid Films 445, 382 (2003).Google Scholar
4. Savoini, B., Santiuste, J. E. Muñoz, Gonzales, R., Phys. Rev. B 10, 5856 (1997).Google Scholar
5. Ramos-Brito, F, García-Hipólito, M., Martínez-Martínez, R., Martínez-Sánchez, E., Falcony, C., J. Phys. D: Appl. Phys. 37, L13 (2004).Google Scholar
6. Reisfeld, R., Zelner, M., and Patra, A., J. Alloys Compd. 300–301, 147 (2000).Google Scholar
7. Pereyra-Perea, E, Estrada-Yañez, M R and García, M, J. Phys. D: Appl. Phys. 31, L7 (1998).Google Scholar
8. Rosa-Cruz, E. De la, Díaz-Torres, L. A., Salas, P., Rodríguez, R. A., Kumar, G. A., Meneses, M. A., Mosiño, J. F., Hernández, J. M., Barbosa-García, O., J. Appl. Phys. 94, 3509 (2003).Google Scholar
9. Rosa-Cruz, E. De la, Díaz-Torres, L. A., Rodríguez-Rojas, R. A., Meneses-Nava, M. A., Barbosa-García, O., Salas, P., Appl. Phys. Lett. 83, 4903 (2003).Google Scholar
10. Urlacher, C., Lucas, C. Marco de, Bernstein, E., Jacquier, B., Mugnier, J., Opt. Mater. 12, 19 (1999).Google Scholar
11. Cross, M., Varhue, W., Mat. Res. Soc. Symp. Proc. 789 N11.8 (2004).Google Scholar
12. French, R H., Glass, S. J., Ohuchi, F. S., Xu, Y.–N., Ching, W. Y., Phys. Rev. B 49, 5133 (1994).Google Scholar
13. Foster, A. S., Sulimov, V. B., Gejo, F. Lopez, Shluger, A. L., and Nieminen, R. M., Phys. Rev. B 64, 224108 (2001).Google Scholar
14. Ostanin, S., Salamatov, E., Phys. Rev. B 68, 172106 (2003).Google Scholar
15. Savoini, B., Santiuste, J. E. Muñoz, González, R., Phys. Rev. B 56, 5856 (1997).Google Scholar
16. Rozo, C., Fonseca, L. F., Resto, O., Weisz, S. Z., Mat. Res. Soc. Symp. Proc. 737, L3.46 (2003).Google Scholar
17. Rozo, C., Fonseca, L. F., Resto, O., Weisz, S. Z., Mat. Res. Soc. Symp. Proc. 832, F10.4 (2005).Google Scholar
18. Rozo, C., Fonseca, L. F., Resto, O., Weisz, S. Z., Mat. Res. Soc. Symp. Proc. 788, L3.2 (2004).Google Scholar
19. Foster, A.S., Sulimov, V.B., Gejo, F. Lopez, Shluger, A.L., Nieminen, R.M., J. Non-Cryst. Solids 303, 101 (2002).Google Scholar