Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:12:58.245Z Has data issue: false hasContentIssue false

Magnetic and Electronic Properties of Fe0.1Sc0.9N/ScN(001)/MgO(001) Films Grown by Radio-Frequency Molecular Beam Epitaxy

Published online by Cambridge University Press:  31 January 2011

Costel Constantin
Affiliation:
constaco@shu.edu, Seton Hall University, South Orange, New Jersey, United States
Kangkang Wang
Affiliation:
kw136705@ohio.edu, Ohio University, Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States, 740-274-1061
Abhijit Chinchore
Affiliation:
ac904605@ohio.edu, Ohio University, Physics And Astronomy, Athens, Ohio, United States
Han-Jong Chia
Affiliation:
chia@physics.utexas.edu, University of Texas at Austin, Department of Physics, Austin, Texas, United States
John Markert
Affiliation:
markert@physics.utexas.edu, University of Texas at Austin, Department of Physics, Austin, Texas, United States
Arthur R Smith
Affiliation:
asmith@helios.phy.ohiou.edu, Ohio University, Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States, 740-274-1061
Get access

Abstract

Fe0.1Sc0.9N with a thickness of ˜ 380 nm was grown on top of a ScN(001) buffer layer of ˜ 50 nm, grown on MgO(001) substrate by radio-frequency N-plasma molecular beam epitaxy (rf-MBE). The buffer layer was grown at TS ˜ 800 oC, whereas the Fe0.1Sc0.9N film was grown at TS ˜ 420 oC. In-situ reflection high-energy electron diffraction measurements show that the Fe0.1Sc0.9N film growth starts with a combination of spotty and streaky pattern [indicative of a combination of smooth and rough surface]. After ˜ 10 minutes of growth, the pattern converts to a spotty one [indicative of a rough surface]. Towards the end of the Fe0.1Sc0.9N film growth, the spotty patterns transform into even spottier, but also ring-like indicating a polycrystalline behavior. Superconducting quantum interference device magnetic measurements show a ferromagnetic to paramagnetic transition of TC ˜ 370 – 380 K. We calculated a magnetic moment per atom of μ(Fe0.1Sc0.9N) = 0.037 Bohr magneton/ Mn-atom. Based on the carrier concentration measurements (nS(Fe0.1Sc0.9N) = 2.086 × 1019 /cm3), we find that iron behaves as an acceptor. Comparisons are made with similar MnScN (001)/ScN(001)/MgO(001) system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y., Hori, H., J. Crys. Growth 237, 1358 (2002).Google Scholar
[2] Reed, M. L., El-Masry, N. A., Stadelmaier, H. H., Ritums, M. K., Parker, C. A., Roberts, J. C., Bedair, S. M., Appl. Phys. Lett. 79, 3473 (2001).Google Scholar
[3] Theodoropoulou, N., Lee, K. P., Overberg, M. E., Chu, S. N. G., Hebard, A. F., Abernathy, C. R., Pearton, S. J., and Wilson, R. G., J. Nanosci. Nanotechnol. 1, 101 (2001).Google Scholar
[4] Thaler, G. T., Overberg, M. E., Gilla, B., Frazier, R., Abernathy, C. R., Pearton, S. J., Lee, J. S., Lee, S. Y., Park, Y. d., Khim, Z. G., Kim, J., and Ren, F., Appl. Phys. Lett. 80, 3964 (2002).Google Scholar
[5] Haider, M. B., Constantin, C., Al-Brithen, H., Yang, H., Trifan, E., Ingram, D., Smith, A. R., Kelly, C. V., and Ijiri, Y., J. Appl. Phys. 93, 5274 (2003).Google Scholar
[6], Overberg, M. E., Abernathy, C. R., Pearton, S. J., Theodoropoulou, N. A., McCarthy, K. T., and Hebard, A. F., Appl. Phys. Lett. 79, 1312 (2001).Google Scholar
[7] Haider, M. B., Constantin, C., Al-Brithen, H., Caruntu, G., O”Conner, C. J., Smith, A. R., Phys. Stat. Solidi A 202:6, 1135 (2005).Google Scholar
[8] Sato, K., Schweika, W., Dederichs, P. H., and Katayama-Yoshida, H., Phys. Rev. B 70, 201202 (2004).Google Scholar
[9] Ohno, H., Science 281, 951956 (1998).Google Scholar
[10] Wang, K.Y., Champion, R. P., Edmonds, K. W., Sawicki, M., Dietl, T., Foxon, C. T., Gallagher, B. L., AIP Conf. Proc. 772, 333334 (2005).Google Scholar
[11] Jungwirth, T., Wang, K. Y., Masek, J., Edmonds, K. W., Konig, J., Sinova, J., Polini, M., Goncharuk, N. A., MacDonald, A. H., Sawicki, M., Rushforth, A. W., Campion, R. P., Zhao, L. X., Foxon, C. T., Gallagher, B. L., Phys. Rev. B 72 (16), 165204–13 (2005).Google Scholar
[12] Yu, K. M., Walukiewicz, W., Wojtowicz, T., Lim, W. L., Liu, X., Sasaki, Y., Dobrowolska, M., Furdyna, J. K., Appl. Phys. Lett. 81, 844 (2002).Google Scholar
[13] Al-Brithen, H. A., Smith, A. R., Gall, D., Physical Review B 70(4), 045303 (2004).Google Scholar
[14] Lambrecht, W. R., Phys. Rev. B 62, 13538 (2000).Google Scholar
[15] Stampfl, C., Mannstadt, W., Asahi, R., and Freeman, A. J., Phys. Rev. B 63, 155106 (2001).Google Scholar
[16] Al-Brithen, H. A., Trifan, E. M., Ingram, D. C., Smith, A. R., and Gall, D., J. Cryst. Growth 242, 345 (2002).Google Scholar
[17] Smith, A. R., Al-Brithen, H. A. H., Ingram, D. C., and Gall, D., J. Appl. Phys. 90, 1809 (2001).Google Scholar
[18] Gall, D., Petrov, I., Madsen, L. D., Sundgren, J. E., and Greene, J. E., Vac. Sci. Technol. A 16, 2411 (1998).Google Scholar
[19] AL-Brithen, H. A., Yang, H., Smith, A. R., J. Appl. Phys. 96(7), 3787 (2004).Google Scholar
[20] Herwadkar, A., Lambrecht, W. R. L., Phys. Rev. B 72 (23), 235207 (2005).Google Scholar
[21] Herwadkar, A., Lambrecht, W. R. L., Schilfgaarde, M. van, Phys. Rev. B 77, 134433 (2008).Google Scholar
[22] Houari, A., Matar, S.F., Belkhir, M. A., Comp. Mat. Sci. 43 (2), 392 (2008).Google Scholar
[23] “Structural, magnetic and electronic properties of dilute MnScN(001) grown by rf nitrogen plasma molecular beam epitaxy” Constantin, C., Wang, K., Chinchore, A., Smith, A. R., Chia, H-J., John Markert, submitted to J. Phys. D: Appl. Phys.Google Scholar