Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T20:26:35.208Z Has data issue: false hasContentIssue false

Magnetic and Structural Properties of MBE-grown Oxidic Multilayers

Published online by Cambridge University Press:  15 February 2011

P. J. H. Bloemen
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
P. A. A. van der heijden
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
R. M. Wolf
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
J. Aan de Stegge
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
J. T. Kohlhepp
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
A. Reinders
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
R. M. Jungblut
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
P. J. van der Zaag
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
W. J. M. de Jonge
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
Get access

Abstract

Multilayers composed of oxides including Fe3O4, CoxFe3−x, O4, CoO, NiO and MgO have been grown epitaxially by MBE on MgO(100) single crystal substrates. These structures can be grown with a high crystallinity in the form of flat layers having sharp interfaces. RHEED studies which commonly yielded sharp streaks accompanied by Kikuchi lines show that, for instance, growth of CoO on Fe3O4 changes the RHEED pattern from that consistent with a spinel structure to that of a rocksalt structure within about one and a half unit cell of CoO. STM studies on a 400 Å Fe3O4 layer displaying atomic resolution enabled us to identify the origin of the reconstruction that one commonly observes in the RHEED and LEED patterns for magnetite. Regarding important fundamental magnetic parameters, relevant thickness dependencies were mapped out using localized magneto-optical Kerr effect experiments performed on several samples that routinely included one or multiple wedge shaped layers. These studies revealed the existence of a region in the Fe3O4 layer near the interfaces which exhibits no net magnetic moment, strain driven perpendicular orientated magnetization for the CoO/Fe3O4(100) and CoO/CoxFe3−xO4(100) bilayer systems, and information on the thickness dependence of the magnetic interlayer coupling across an MgO spacer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] see for reviews several chapters in vol.1 and 2 of Ultrathin Magnetic Structures, ed. Bland, J.A.C. and Heinrich, B. (Springer-Verlag Berlin Heidelberg, 1994).Google Scholar
[2] Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chien, L.H., Science 264, 413 (1994).Google Scholar
[3] Carey, M.J., Berkowitz, A.E., Appl. Phys. Lett. 60, 3060 (1992); M.J. Carey, A.E. Berkowitz, J.A. Borchers, and R.W. Erwin, Phys. Rev. B 47, 9952 (1993).Google Scholar
[4] Egelhoff, W.F. Jr, et al. , J. Appl. Phys. 78, 273 (1995).Google Scholar
[5] Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).Google Scholar
[6] Gijs, M.A.M. and Kelly, P.J., European patent application, EP 0 672 303 Al, Sept. 1995.Google Scholar
[7] Terashima, T. and Bando, Y., Thin Solid Films 151, 455 (1987).Google Scholar
[8] Lind, D.M., Berry, S.D., Chern, G., Mathias, H., and Testardi, L.R., Phys. Rev. B 45 1838 (1992)Google Scholar
[9] Wolf, R.M., De Veirman, A.E., van der Sluis, P., van der Zaag, P.J., and aan de Stegge, J.B.F., Mater. Res. Soc. Symp. Proc. 341, 23 (1994).Google Scholar
[10] Voogt, F.C., Hibma, T., Zhang, G.L., Hoefman, M. and Niesen, L., Surf. Sci. 331, 1508 (1995); S.D. Peacor and T. Hibma, Surf. Sci. 301, 11 (1994).Google Scholar
[11] van der Zaag, P.J., Wolf, R.M., Ball, A.R., Bordel, C., Feiner, L.F. and Jungblut, R.M., J. Magn. Magn. Mater. 148, 346 (1995).Google Scholar
[12] Sevenhans, W., Gijs, M., Bruynserade, Y., Homma, H. and Schuller, I.K., Phys. Rev. B 34, 5955 (1986).Google Scholar
[13] Tarrach, G., Bügler, D., Schaub, T., Wiesendanger, R. and Günterodt, H.-J., Surf. Sci. 285, 1 (1993).Google Scholar
[14] van der Heijden, P.A.A. et al. , in preparation.Google Scholar
[15] Parkin, S.S.P., Sigsbee, R., Felici, R. and Felcher, G.P., Appl. Phys. Lett. 48, 604 (1986).Google Scholar
[16] van de Veerdonk, R.J.M. et al. , to be published.Google Scholar
[17] de Jonge, W.J.M., Bloemen, P.H.J., and den Broeder, F.J.A. in Ultrathin Magnetic Structures I, edited by Bland, J.A.C. and Heinrich, B. (Springer-Verlag Berlin Heidelberg, 1994), p 65.Google Scholar
[18] van der Heijden, P.A.A. et al. , MRS spring meeting 1995, San Francisco, to be published.Google Scholar
[19] Slonczewski, J.C., Phys. Rev. B 39, 6995 (1989).Google Scholar
[20] de Gennes, P.-G., Phys. Rev. 118, 141 (1960).Google Scholar