Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T10:22:29.836Z Has data issue: false hasContentIssue false

Magnetic Ordering of Tb Overlayers on Ni(111)

Published online by Cambridge University Press:  21 February 2011

D. Lagraffe
Affiliation:
Physics Department, Syracuse University, Syracuse, NY 13244-1130
A. Miller
Affiliation:
Physics Department, Syracuse University, Syracuse, NY 13244-1130
P.A. Dowben
Affiliation:
Physics Department, Syracuse University, Syracuse, NY 13244-1130
M. Onellion
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI, 53706
Get access

Abstract

The 5p3/2 to 5p1/2 shallow core level branching ratios in different photoemission geometries provide a measure of the magnetic ordering in rare earth overlayers as a result of final state effects in photoemission. This 5p level anisotropy can be used to probe magnetic ordering across the Tb Curie temperature as well as magnetic ordering induced by a ferromagnetic substrate in a paramagnetic overlayer. Results are shown for paramagnetic Tb overlayers on Ni(111). The Ginzberg-Landau theory can be used to accurately model terbium thin films for T>Tc.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. LaGraffe, D., Dowben, P.A., and Onellion, M., Phys. Rev. B 40, 970 (1989).Google Scholar
2. LaGraffe, D., Dowben, P.A., and Onellion, M., Mat. Res. Soc. Sym. Proc. 151, 71 (1989).Google Scholar
3. Dowben, P.A., LaGraffe, D., and Onellion, M., J. Phys. C 1, 6751 (1989).Google Scholar
4. LaGraffe, D., Dowben, P.A., and Onellion, M., Phys. Lett. A 147, 240 Google Scholar
5. LaGraffe, K., Dowben, P.A., and Onellion, M., J. Vac. Sci. Tech. A 8, 2738 Google Scholar
6. LaGraffe, D, Dowben, P.A., and Onellion, M., Phys. Rev. B 40, 3348 Google Scholar
7. Merzbacher, E., Quantum Iechanica, second edition (Wiley, New York, 1970) see eq. 16.80, p, 393.Google Scholar
8. Mathon, J., J. Phys. F 16, L217 (1986).Google Scholar
9. Mathon, J., J. Phys. F 16, 669 (1986).Google Scholar
10. Tilley, D.R., Solid State Comm. 65, 657 (1988).Google Scholar
11. Camley, R.E., Phys. Rev. B 35, 3608 (1987).Google Scholar
12. Camley, R.E. and Tilley, D.R., Phys. Rev. B 37, 3473 (1988).Google Scholar
13. Fishman, F., Schwabb, F., and Schwenk, D., Phys. Lett. A 121, 192 (1987).Google Scholar
14. Tuszynski, J.A., Mat. Res. Soc. Symp. Proc. 151, 265 (1989).Google Scholar
15. Edwards, D.M., Mathon, J., and Wohlfarth, E.P., J. Phy. F 3, 161 (1973).Google Scholar
16. Coutinho, S., Edwards, D.M., and Mathon, I., J. Phys. F 13, L143 (1983).Google Scholar
17. Mathon, J. and Bergmann, G., J. Phys. F 16, 887 (1986).Google Scholar
18. Binder, K.A. and Hohenberg, P.C., Phys. Rev. B 6, 3461 (1972); P.G. de Gennes, Suverconductivit, of Metal and Alloy (Benjamin, New York, 1966), p. 277; C.R. Hu and V. Korenman, Phys. Rev. 185, 672 (1969).Google Scholar
19. Lifshitz, E.M. and Pitaevski, L.P., Statistical Physics, part 2, (Pergamon Press, Oxford, 1980) p. 182.Google Scholar
20. Gradmann, U. and Bergholz, R., Phys. Rev. Lett. 52, 771 (1984).Google Scholar