Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:19:29.782Z Has data issue: false hasContentIssue false

Magnetic Phase Diagram of Transition Metal Doped ZnO from Density Functional Theory Calculations and Monte Carlo Simulations

Published online by Cambridge University Press:  01 February 2011

Sanjeev K. Nayak
Affiliation:
sanjeev.nayak@uni-due.de, University of Duisburg Essen, Faculty of Physics, Duisburg, Germany
Heike C. Herper
Affiliation:
heike.herper@uni-due.de, University of Duisburg Essen, Faculty of Physics, Duisburg, Germany
Peter Entel
Affiliation:
peter.entel@uni-due.de, University of Duisburg Essen, Faculty of Physics, Duisburg, Germany
Get access

Abstract

Transition metals doped ZnO are possible candidates for multiferroics. Here, we have investigated the evolution of ferromagnetism due to Co dopants. The magnetic properties have been studied for Co concentrations from 0 to 100% by using ab-initio methods, i.e., KKR Green's function techniques. In order to estimate the Curie temperature we have performed Monte Carlo simulations with ab-initio calculated exchange parameters.

From our calculations the onset of ferromagnetism occurs between 5 to 20% of Co depending on the numerical details of KKR method used. For Co concentrations larger than 50% the system is dominated by antiferromagnetic coupling and no Curie temperature can be obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lin, Y.-H., Ying, M., Li, M., Wang, X., and Nan, C.-W., Appl. Phys. Lett. 90, 222110 (2007).Google Scholar
2 Yang, Y. C., Zhong, C. F., Wang, X. H., He, B., Wei, S. Q., Zeng, F., and Pan, F., J. Appl. Phys. 104, 064102 (2008).Google Scholar
3 Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
4 Ney, A., Ollefs, K., Ye, S., Kammermeier, T., Ney, V., Kasper, T. C., Chambers, S. A., Wilhelm, F., and Rogalev, A., Phys. Rev. Lett. 100, 157201 (2008).Google Scholar
5 Wang, K. Y., Campion, R. P., Edmonds, K. W., Sawicki, M., Dietl, T., Foxon, C. T. and Gallagher, B. L., AIP Conf. Proc. 772, 333 (2005).Google Scholar
6 Liechtenstein, A. I., Katsnelson, M. I., Antropov, V. P., and Gubanov, V. A., J. Magn. Magn. Mater. 67, 65 (1987).Google Scholar
7 Akai, H., Phys. Rev. Lett. 81, 3002 (1998).Google Scholar
8 Zeller, R. et al., KKR code developed in Research Center Jülich.Google Scholar
9 Ebert, H., Lecture Notes in Physics, vol. 535, p. 191, Springer Berlin. /http://olymp.cup.uni- muenchen.de/ak/ebert/SPRKKRGoogle Scholar
10 Dederichs, P. H., Sato, K., and Katayama-Yoshida, H., Phase Transitions 78, 851 (2005).Google Scholar
11 G, R. W.. Wyckoff, Crystal Structures, Vol 1, 2nd Edition, Wiley, New York, 1986, p. 112.Google Scholar
12 Sato, K. and Katayama-Yoshida, H., Physica B 308, 904 (2001).Google Scholar
13 Sato, K. and Katayama-Yoshida, H., Physica E 10, 251 (2001).Google Scholar
14 Nayak, S. K., Ogura, M., Hucht, A., Akai, H., and Entel, P., J. Phys.: Condens. Matter 21, 064238 (2009).Google Scholar
15 Kisi, E. H. and Elcombe, M. M., Acta Cryst. C45, 1867 (1989).Google Scholar
16 Gopal, P. and Spaldin, N. A., Phys. Rev. B 74 094418 (2006).Google Scholar
17 Nayak, S. K., Ogura, M., Hucht, A., Buschmann, S., Akai, H., and Entel, P., Phys. Stat. Sol. (a) 205, 1839 (2008).Google Scholar
18 Katayama-Yoshida, H., Sato, K., Fukushima, T., Toyoda, M., Kizali, H., Dinh, V. A., and Dederichs, P. H., Phys. Stat. Sol. (a) 204, 15 (2007).Google Scholar