Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T02:35:08.706Z Has data issue: false hasContentIssue false

Magnetic Properties of Embedded Rh Clusters in Ni Matrix

Published online by Cambridge University Press:  15 February 2011

Zhi-Qiang Li
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Yuichi Hashi
Affiliation:
Hitachi Tohoku Software Ltd., Research and Development Center, Sendai 980, Japan
Jing-Zhi Yu
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Kaoru Ohno
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Yoshiyuki Kawazoe
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Get access

Abstract

The electronic structure and magnetic properties of rhodium clusters with sizes of 1 - 43 atoms embedded in the nickel host are studied by the first-principles spin-polarized calculations within the local density functional formalism. Single Rh atom in Ni matrix is found to have magnetic moment of 0.45μB. Rh13 and Rhl 9 clusters in Ni matrix have lower magnetic moments compared with the free ones. The most interesting finding is tha.t Rh43 cluster, which is bulk-like nonmagnetic in vacuum, becomes ferromagnetic when embedded in the nickel host.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See Proc. of the Sixth Int. Meeting on Small Particles and Inorganic Clusters, Chicrgo, 1992; 1993 Z. Phys. D 26.Google Scholar
[2] Reddy, B.V., Khanna, S.N. and Dunlap, B.I., Phys. Rev. Lett. 70 3323(1993).Google Scholar
[3] Cox, A.J., Louderback, J.G., Apsel, S.E. and Bloomfield, L.A., Phys. Rev. Lett. 71 923(1993); Phys. Rev. B49 12295(1994).Google Scholar
[4] Jinlong, Yang, Toigo, F.,and Kelin, Wang, Phys. Rev. B50 7915(1994)Google Scholar
[5] Li, Z.Q., Yu, J.Z., Olino, K. and Kawazoe, Y., J. Phys.: Condensed Matter 7. 47(1995)Google Scholar
[6] Kachel, T. and Gudat, W., Phys. Rev. B46 12888(1992).Google Scholar
[7] Fisher, K.H. in Landolt-Bornstein: Numerical Data and Functional Relationship in Science and Technology, edited by Hellwege, K.H. and Olsen, J.L., (Spring-Verlag, Berlin,1982).Google Scholar
[8] Kolin, W. and Sham, L.J., Phys. Rev. 140 A1133(1965).Google Scholar
[9] Barth, U. von and Hedin, L., J. Phys. C5 1629(1972).Google Scholar
[10] Delley, B., Ellis, D.E., Freeman, A.J., and Post, D., Phys. Rev. B27 2132(1983).Google Scholar
[11] Press, M.R., Liu, F., Khanna, S.N. and Jena, P., Phys. Rev. B40 399(1989).Google Scholar
[12] Li, Z.Q. and Gu, B.L., Phys. Rev. B47 13611(1993).Google Scholar
[13] Ellis, D.E. and Painter, G.P., Phys. Rev. B2 2887(1970).Google Scholar
[14] Moruzzi, V.L., Janak, J.F. and Williams, A.R., Calculated Electronic Properties of Metals (Pergamon, New York,1978)Google Scholar
[15] Zeller, R., J. Phys. F 17 2123(1987).Google Scholar
[16] Cable, J.W., Phys. Rev. B15 3477(1977).Google Scholar
[17] Guenzburger, D. and Ellis, D.E., Phys. Rev. Lett. 67 3832(1991); Phys. Rev. B45 285(1992).Google Scholar
[18] Hicks, T.J., J. Phys. F 10 879(1980).Google Scholar