Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:25:21.552Z Has data issue: false hasContentIssue false

Magnetic Properties of Ions Implanted in Glass; Fe in SiO2

Published online by Cambridge University Press:  25 February 2011

R.A. Weeks
Affiliation:
Vanderbilt University, Nashville, TN 37235, USA
M.C. Silva
Affiliation:
Vanderbilt University, Nashville, TN 37235, USA
G. Kordas
Affiliation:
Vanderbilt University, Nashville, TN 37235, USA
D.L. Kinser
Affiliation:
Vanderbilt University, Nashville, TN 37235, USA
J. Martinelli
Affiliation:
Vanderbilt University, Nashville, TN 37235, USA
B.R. Appleton
Affiliation:
Oak Ridge National Laboratories, Oak Ridge, TN 37831, USA
Get access

Abstract

Silica glass platelets have been implanted with Fe(+) ions, 125 KeV and 10⋀-5 A to doses of 10⋀14 cm⋀-2, 10⋀15 cm⋀-2, 10⋀16 cm⋀-2 and 5 x 10⋀16 cm⋀-2. Ion scattering measurements show that the peak of the Fe ion distribution is ~95 nm below the sample surface, approximately Gaussian, with a width at half maximum amplitude of 100 nm. The intensity of a component in the EPR spectra of implanted samples with a width of 300 gauss and an approximately isotropic shape increases with increasing dose. The increase, proportional to dose for doses <⋀16 cm⋀-2, is larger for doses ≥10⋀16 cm⋀-2. In addition for doses ≥10⋀16 cm⋀-2, the component is orientation dependent. Subsequent heat treatments in air at 700° and 800° C alter the shape, intensity, and orientation dependence of the component. The spectral component in as-implanted samples is attributed to paramagnetic states of Fe ions. The threshold for magnetic exchange interactions and consequently long range magnetic ordering at ~300K occurs at a dose ≥10⋀16 cm⋀-2. Data on effects of thermal treatments on intensities and shapes are interpreted in terms of changing chemical composition of precipitating-particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Webb, A. P. and Townsend, P. D., J. Phys. D. 9, 1343 (1976).CrossRefGoogle Scholar
2. Mazzoldi, P., Nucl. Instr. and Meth. 209/210 1089 (1983).CrossRefGoogle Scholar
3. White, G., Farlow, G., Narayan, J., Clark, G. J., and Baglin, J.E.E., Matl. Lett 2, 367 (1984).Google Scholar
4. Perez, A, Treilleux, M., Fritsch, L., Nucl. Inst. Meth., 182/183 747 (1981).Google Scholar
5. Perez, A., Marest, G. Sawicka, B. D., Swicki, J. A., and Tylisyczak, T., Phys. Rev. B, 281227 (1983).Google Scholar
6. Naramato, H. White, C.W., Williams, J. M., McHargue, C. J., Holland, O. W., Abraham, M.M., & Appleton, B.R., J.Appl. Phys., 5, 44 (1983) 683.Google Scholar
7. McGargue, C. J. White, C.W. Appleton, B. R., Faslow, G.C., and Williams, J. M., Ion Implantation and Ion Beam Processinq of Materials, edited by Hubler, G. K. White, C.W., Holland, O. W. and Clayton, C.R., Materials Research Society Symposium Proc., Vol. 27, Elsevier, NY 1984, p. 385.Google Scholar
8. Naguils, H. M. and Kelly, R., Rad. Eff. 251 (1975).Google Scholar
9. Appleton, B. R., Maramato, H. White, C.W., Holland, O. W., McHargue, C. J. Farlow, G., Narayan, J. and Williams, J. M., Nucl. Inst. Methods in Phys. Resch B 167 (1984).CrossRefGoogle Scholar
10. Malozemoff, A. P. & Jamet, J. P., Phys.Rev. Lett. 39, 1293 (1977). J. P. Jamet and A. P. Malozemoff, Phys. Rev. B. 1-875 (1978); Ibid, Phys.Rev. Lett, 39, 91293 (1977).Google Scholar
11. Weeks, R. A., J. Appl. Phys. 27 1376 (1956).CrossRefGoogle Scholar
12. Ghoshtagore, R. N., J. Appl. Phys. 40 4374 (1969).Google Scholar
13. Atkinson, A. and Gardner, J. W., Corr. Sci. 21 49 (1981).Google Scholar
14. Revesz, A. G. and Schaeffer, H.A., J. Electrochem. Soc. 129 357 (1982).Google Scholar
15. Komatsu, T., Soya, N., and Kunugi, M., J. Appl. Phys. 50 6469 (1979).Google Scholar