Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:00:52.850Z Has data issue: false hasContentIssue false

Magnetic Quantum Oscillations from Surface States of Bi Nanowires

Published online by Cambridge University Press:  07 July 2011

L. A. Konopko
Affiliation:
Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, MD-2028, Moldova. International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53-421, Poland.
T. E. Huber
Affiliation:
Howard University, 500 College St. N.W., Washington, DC 20059, U.S.A.
A. A. Nikolaeva
Affiliation:
Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, MD-2028, Moldova. International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53-421, Poland.
Get access

Abstract

In this work, we report the results of studies of the transverse magnetoresistance (MR) of single-crystal Bi nanowires with diameter d<80 nm. The single-crystal nanowire samples were prepared by the Taylor-Ulitovsky technique. Due to the semimetal-to-semiconductor transformation and high density of surface states with strong spin-orbit interactions, the charge carriers are confined to the conducting tube made of surface states. The non monotonic changes of transverse MR that are equidistant in a direct magnetic field were observed at low temperatures in a wide range of magnetic fields up to 14 T. The period of oscillations depends on the wire diameter d as for the case of longitudinal MR. An interpretation of transverse MR oscillations is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Edelman, V. S., Adv. Phys. 25, 555 (1976).Google Scholar
2. Lin, Y., Sun, X., Dresselhaus, M.S., Phys. Rev B 62, 4610 (2000).Google Scholar
3. Hofmann, P., Prog. Surf. Sci. 81, 191 (2006).Google Scholar
4. Aharonov, Y., Bohm, D., Phys. Rev. 115, 485 (1959).Google Scholar
5. Altshuler, B.L., Aronov, A.G., Spivak, B.Z., Zh. Eksp. Teor. Fiz., Pis. Red. 33, 101 (1981). [ JETP Lett. 33, 94(1981).] Google Scholar
6. Bachtold, A., Strunk, A., Salvetat, J.-P., Bonard, J.-M., Forro, L., Nussbaumer, T., and Schonenberger, C., Nature (Lond.) 397, 673 (1999).Google Scholar
7. Huber, T.E., Celestine, K., Graf, M.J., Phys. Rev B 67, 245317 (2003).Google Scholar
8. Brandt, N.B., Gitsu, D.V., Nikolaeva, A.A., Ponomarev, Ya.G., Zh. Eksp. Teor. Fiz. 72, 2332 (1977). [ Sov. Phys. JETP45, 1226(1977).] Google Scholar
9. Webb, R. A., Washburn, S., Umbach, C. P., and Laibowitz, R. B., Phys. Rev. Lett. 54, 2696 (1985).Google Scholar
10. Lee, P. A., and Stone, A. D., Phys. Rev. Lett. 55, 1622 (1985).Google Scholar
11. Berry, V., Proc. R. Soc. Lond., Ser. A 392, 45 (1984).Google Scholar
12. Konopko, L., Huber, T., Nikolaeva, A., J. Low Temp. Phys. 158, 523 (2010).Google Scholar
13. Gitsu, D., Konopko, L., Nikolaeva, A., Huber, T., J. Appl. Phys. Lett. 86, 102105 (2005).Google Scholar
14. Hasan, M. Z., and Kane, C. L., Rev. Mod. Phys. 82, 3045 (2010).Google Scholar
15. Murakami, S., Phys. Rev. Lett. 97, 236805 (2006).Google Scholar