Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T10:18:39.075Z Has data issue: false hasContentIssue false

The Magnetic Structure of the Rare-Earth Intermetallic Compound La3Co29Si4B10

Published online by Cambridge University Press:  01 February 2011

Heng Zhang
Affiliation:
School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia
M. Hofmann
Affiliation:
Technische Universität München, ZWE, FRM-II, 85747 Garching, Germany
S. J. Kennedy
Affiliation:
Technische Universität München, ZWE, FRM-II, 85747 Garching, Germany
S. J. Campbell
Affiliation:
School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia Technische Universität München, ZWE, FRM-II, 85747 Garching, Germany
Get access

Abstract

A quaternary rare-earth intermetallic compound La3Co29Si4B10 has been synthesized and the crystal and magnetic structures investigated by neutron diffraction over the temperature range 7–300 K. Rietveld refinements of the neutron diffraction patterns demonstrate that La3Co29Si4B10 is tetragonal and isostructural with Nd3Ni29Si4B10. The magnetic scattering indicates that the moments of the Co sublattice are collinear and lie in the basal plane. The mean magnetic moment for the Co atoms is μ ∼ 0.5 μB, or 13.6μB/F.U., in agreement with magnetization measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Heng, Campbell, S. J. and Edge, A. V. J., J. Phys.: Condensed Matter 12, L159 (2000).Google Scholar
2. Zhang, Heng, Campbell, S. J., Li, Hong-Shuo, Yan, Q. W., Wu, E. and Hofmann, M., Physica B 305, 10 (2001).Google Scholar
3. Heng Zhang and Campbell, S. J., J. Appl. Phys. 93, 9177 (2003).Google Scholar
4. Heng Zhang, Wu, E., Campbell, S. J., Kennedy, S. J., Li, H.-S., Studer, A. J., Bulcock, S. R. and Rae, A. D., J. Alloys and Compounds 278, 239 (1998).Google Scholar
5. Izyumov, Yu. A., Naish, V. E. and Ozerov, R. P., Neutron Diffraction of Magnetic Materials (Consultants Bureau, New York, 1991).Google Scholar
6. FULLPROF, Program for Rietveld-Refinement of X-ray and Neutron diffraction patterns, by Juan Rodriguez-Carvajal, Laboratoire Leon Brillouin (CEA-CNRS, 2000), http://www-llb.cea.fr/fullweb/fp2k/fp2k.htm.Google Scholar
7. Brown, P. J., Magnetic Form Factors, in International Tables for Crystallography, Vol. C, ed. Wilson, (Kluwer Academic, Dordrecht, 1992) pp. 391.Google Scholar
8. Reehuis, M., Stüβber, N., Nientiedt, A., Ebel, T., Jeitschko, W. and Ouladdia, F B., J. Magn. Magn. Mater. 177–181, 805 (1998).Google Scholar
9. Herbst, J. F. and Yelon, W. B., J. Appl. Phys. 57, 2343 (1985).Google Scholar
10. Pedziwiatr, A. T. and Wallace, W. E., Solid State Commun. 60, 635 (1986).Google Scholar
11. Zhao, X. L., Ph.D Thesis, (University College, University of New South Wales, Australia Defence Force Academy, 1996).Google Scholar
12. Franse, J. J. M. and Radwanski, R. J., in Handbook of Magnetic Materials, vol. 7, ed. Buschow, K. H. J. (North-Holland, Amsterdam, 1993) pp. 307.Google Scholar
13. Buschow, K. H. J., in Ferromagnetic Materials, Vol. 4, eds Wohlfarth, E. P. and Buschow, K. H. J., (North-Holland, Amsterdam, 1988) pp. 1 Google Scholar