Published online by Cambridge University Press: 26 February 2011
The magnetic properties of layered LiNi0.5Mn0.5O2 and NaNi0.5Mn0.5O2 cathode materials are studied using AC susceptibility and DC magnetization techniques in order to elucidate magnetic interactions within transition metal (TM) layers and between them in samples with various TM distributions. In NaNi0.5Mn0.5O2 antiferromagnetic (AF) ordering transition is found at 60 K and a spin-flop transition at high magnetic field. In LiNi0.5Mn0.5O2 obtained by ion exchange from NaNi0.5Mn0.5O2 ferrimagnetic ordering is found at around 100 K. The saturation magnetization and the hysteresis loop size of ion-exchanged compounds vary from sample to sample, which implies that the Ni2+ ions migrate upon ion exchange process. Magnetic properties of high-temperature and ion-exchanged LiNi0.5Mn0.5O2 are compared; magnetic ordering models for all compounds are proposed based on experimental results and Goodenough-Kanamori rules.