Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:05:43.679Z Has data issue: false hasContentIssue false

Magnetite Sorption Capacity for Strontium as a Function of pH

Published online by Cambridge University Press:  01 February 2011

Joan de Pablo
Affiliation:
Dept. Chemical Engineering, Universitat Politécnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain CTM Centre Tecnológic, Avda. Bases Manresa 1, 08240 Manresa, Spain
Miquel Rovira
Affiliation:
Dept. Chemical Engineering, Universitat Politécnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain CTM Centre Tecnológic, Avda. Bases Manresa 1, 08240 Manresa, Spain
Javier Giménez
Affiliation:
Dept. Chemical Engineering, Universitat Politécnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain CTM Centre Tecnológic, Avda. Bases Manresa 1, 08240 Manresa, Spain
Ignasi Casas
Affiliation:
Dept. Chemical Engineering, Universitat Politécnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
Frederic Clarens
Affiliation:
CTM Centre Tecnológic, Avda. Bases Manresa 1, 08240 Manresa, Spain
Get access

Abstract

The ubiquity of iron oxide minerals and their ability to retain metals on their surface can represent an important retardation factor to the mobility of radionuclides. In a deep repository for the spent nuclear fuel, the intrusion of the groundwater might produce the anoxic corrosion of the iron, with magnetite as one of the end-products. In this study, as expected considering the strontium speciation in solution, strontium is sorbed onto magnetite at alkaline pH values while at acidic pH the sorption is negligible. Magnetite is able to sorb more than the 50% of the strontium from a 8·10-6 mol·dm-3 solution at the pH range representative of most groundwater (7-9). A surface complexation model has been applied to the experimental data, allowing to explain the results using the Diffuse Layer Model (DLM) and considering the formation of the inner-sphere complex >FeOHSr2+ (with a calculated logK=2.7±0.3). Considering these data, the magnetite capacity to retain strontium and other radionuclides is discussed

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smailos, E., Swarzkopf, W., Kienzler, B., Köster, R. in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, C.G. (Mater. Res. Soc. Symp. Proc. 257, Pittsburg PA, 1992) pp. 399406.Google Scholar
2 Martnez, M., Giménez, J., Pablo, J. de, Rovira, M., Duro, L., Appl. Surf. Sci. 252, 3767 (2006).Google Scholar
3 Rovira, M., Pablo, J. de, Casas, I., Giménez, J., Clarens, F., in Scientific Basis for Nuclear Waste Management XXVII, edited by Oversby, V.M and Werme, L.O. (Mater. Res. Soc. Symp. Proc. 807, Pittsburg PA, 2004) pp. 677682.Google Scholar
4 Rovira, M., Pablo, J. de, Casas, I., Giménez, J., Clarens, F., Martínez-Lladó, X. in Scientific Basis for Nuclear Waste Management XXIX, edited by Iseghem, P. Van (Mater. Res. Soc. Symp. Proc. 932, Pittsburg PA, 2006) pp. 143150.Google Scholar
5 Todorovic, M., Milonjic, S.K., Comor, J.J., Gal, I.J., Sep. Sci. Technol. 27, 671 (1992).Google Scholar
6 Ebner, A.D., Ritter, J.A., Navratil, J.D., Ind. Eng. Chem. Res. 40, 1615 (2001).Google Scholar
7 Dzombak, D.A., Morel, F.M. in Surface Complexation Modeling. Hydrous Ferric Oxide. (Wiley-Interscience, New York, 1990).Google Scholar
8 Herbelin, A.L., Westall, J.C., FITEQL 4.0: a Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data. (Department of Chemistry, Oregon State University, Corvallis, 1999).Google Scholar
9 Davies, J.A., Kent, D.B., Rev. Mineralogy 23, 117 (1990).Google Scholar
10 Missana, T., García, M., Maffiotte, C., Uranium(VI) sorption on goethite: Experimental study and surface complexation modelling. ENRESA Report 02/2003 (Madrid, Spain, 2003).Google Scholar
11 Ball, J.W., Nordstrom, D. K. WATEQ4F. User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters: U.S. Geological Survey Open-File Report 90-129, (1991).Google Scholar
12 Axe, L., Anderson, P.R., J. Colloid Interf. Sci. 175, 157 (1995).Google Scholar