Published online by Cambridge University Press: 10 February 2011
Magnetic and magnetoresistive properties of magnetic thin films deposited on periodically structured substrates have been studied. By using a thermodynamical heat treatment, we activate the step bunching phenomenon on vicinal Si(111) substrates misoriented towards [112] which results in a laterally modulated surface with a period around 0.1 μm. Epitaxial magnetic thin films deposited on these substrates exhibit an in-plane uniaxial anisotropy and a specific magnetoresistive behavior which characterizes the magnetization reversal process. In this contribution, we demonstrate that these properties can also be observed in non-epitaxial structures grown either by molecular beam epitaxy or by sputtering. In particular, magnetotransport measurements show that by varying parameters such as the nature of the magnetic metal, the layer thickness or the strength of the induced anisotropy, we can modulate the interplay between the anisotropy and the exchange stiffness, and, consequently, observe gradual magnetization reversal behaviors between a Stoner-Wohlfarth uniform mode and a non-uniform mode.