Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T10:10:07.514Z Has data issue: false hasContentIssue false

Magnetocaloric Effect in Ni-Mn-Ga and Ni-Co-Mn-In Heusler Alloys

Published online by Cambridge University Press:  31 January 2011

Vasiliy Buchelnikov
Affiliation:
buche@csu.ru, Chelyabinsk State University, Chelyabinsk, Russian Federation
Sergey Taskaev
Affiliation:
tsv@csu.ru, Chelyabinsk State University, Chelyabinsk, Russian Federation
Mikhail Drobosyuk
Affiliation:
m.syuk@mail.ru, Chelyabinsk State University, Chelyabinsk, Russian Federation
Vladimir Sokolovskiy
Affiliation:
vsokolovsky84@mail.ru, Chelyabinsk State University, Chelyabinsk, Russian Federation
Viktor Koledov
Affiliation:
koledov@cplire.ru, Institute of Radioengineering and Electronics of RAS, Moscow, Russian Federation
Vladimir Khovaylo
Affiliation:
khovaylo@gmail.com, National University of Science and Technology “MISiS”, Moscow, Russian Federation
Vladimir Shavrov
Affiliation:
shavrov@cplire.ru, Institute of Radioengineering and Electronics of RAS, Moscow, Russian Federation
Alexander Fediy
Affiliation:
afediy@csu.ru, Chelyabinsk State University, Chelyabinsk, Russian Federation
Get access

Abstract

The positive magnetocaloric effect (MCE) in the vicinity of the Curie point in Ni2+xMn1-xGa (x=0.33, 0.36, 0.39) Heusler alloys and the negative and positive MCE near the metamagnetostructural (MMS) transition and the Curie point, respectively, in Ni45Co5Mn36.5In13.5 Heusler alloy has been measured by a direct method. For the magnetic field change ΔH = 2 T, the maximal adiabatic temperature change ΔTad at the Curie point in Ni2+xMn1-xGa alloys is larger than 0.6 K. For Ni45Co5Mn36.5In13.5 alloy, the maximal value of ΔTad = 1.68 K (for the same magnetic field change, ΔH = 2 T) is observed at the MMS phase transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gschneidner, K.A. Jr , Pecharsky, V.K., and Tsokol, A., Rep. Progr. Phys. 68, 1479 (2005).Google Scholar
2 Gschneidner, K. A. Jr, and Pecharsky, V. K., Int. J. Refrig. 31, 945 (2008).Google Scholar
3 Planes, A., Manosa, L., and Acet, M., J. Phys.: Condens. Matter 21, 233201 (2009).Google Scholar
4 Entel, P., Buchelnikov, V. D., Khovailo, V. V., Zayak, A. T., Adeagbo, W. A., Gruner, M. E., Herper, H. C., and Wassermann, E. F., J. Phys. D: Appl. Phys. 39, 865 (2006).Google Scholar
5 Khovaylo, V. V., Buchelnikov, V. D., Kainuma, R., Koledov, V. V., Ohtsuka, M., Shavrov, V. G., Takagi, T., Taskaev, S. V., and Vasiliev, A. N., Phys. Rev. B 72, 224408 (2005).Google Scholar
6 Ito, W., Imano, Y., Kainuma, R., Sutou, Y., Oikawa, K., and Ishida, K., Metal. Mater. Trans. A 38, 759 (2007).Google Scholar
7 Spichkin, Y.I., Zimm, C.B., and Tishin, A.M., in Proc. Second IIF-IIR Intern. Conf. Magnetic Refrigeration at Room Temperature (Portoroz, Slovenia, 2007), p. 135.Google Scholar
8 Moya, X., Manosa, L., Planes, A., Aksoy, S., Acet, M., Wassermann, E., and Krenke, T., Phys. Rev. B. 75, 184412 (2007).Google Scholar
9 Planes, A., Mañosa, Ll. and Acet, M., J. Phys.: Condens. Matter 21, 233201 (2009).Google Scholar