Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T20:55:49.095Z Has data issue: false hasContentIssue false

Magnetotactic Bacteria – a Natural Architecture Leading from Structure to Possible Applications

Published online by Cambridge University Press:  31 January 2011

Kui Yu Zhang
Affiliation:
kui.yu@univ-reims.fr, University of Reims, Physics, LMEN - UFR Sciences, B.P. 1039, Reims, 51687, France, +33326913447
Kai Ling Zhu
Affiliation:
zhulailing0532@hotmail.com, Institute of Oceanology, CAS, Qingdao, Shandong, China
Tian Xiao
Affiliation:
txiao@ms.qdio.ac.cn, Institute of Oceanology, CAS, Qingdao, China
Long Fei Wu
Affiliation:
wu@ifr88.cnrs-mrs.fr, Laboratoire de Chimie Bactérienne, CNRS -Marseille, Marseille, France
Get access

Abstract

Magnetotactic bacteria are aquatic micro-organisms which have the specific capacity to navigate along the lines of the earth’s magnetic field. This property is related to the formation of chains of magnetic crystals called magnetosomes. All magnetotactic bacteria synthesize nano-sized intracellular magnetosomes that are surrounded by ultra-thin bio-membranes. The magnetosome chains serve as compass for navigation of the magnetotactic bacteria, and the cell flagella are considered as the mechanism for propelling the bacteria forward. This presentation describes various functions of the architectured structure of magnetotactic bacteria as well as their possible applications in biotechnology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thompson, D’Arcy, On Growth and Form, ed. Bonner, J. T., Cambridge Univ. Press (1992).10.1017/CBO9781107325852Google Scholar
2 Blakemore, R. P., Science 190, 377 (1975).10.1126/science.170679Google Scholar
3 Bellini, S., http://www.calpoly.edu/˜rfrankel/Sbellini2.pdf.Google Scholar
4 Bellini, S., Chinese J. Oceanology and Limnology 27, 3-5 & 612 (2009).10.1007/s00343-009-0006-2Google Scholar
5 Frankel, R. B., Chinese J. Oceanology and Limnology 27, 12 (2009).10.1007/s00343-009-0001-7Google Scholar
6 Pósfai, M., Buseck, P. R., Bazylinski, D. A., and Frankel, R. B., Science 280, 880 (1998).Google Scholar
7 Blakemore, R. P., Annu. Rev. Microbiol. 36, 217238 (1982).10.1146/annurev.mi.36.100182.001245Google Scholar
8 Bazylinski, D. A. and Moskowwitz, B. M., Microbial biomineralisation of magnetic iron minerals, ed. Banfield, J. F. and Nealson, K. H. (1997), Rev. Mineral. 35, pp. 191223.Google Scholar
9 Frankel, R. B. and Moskowwitz, B. M., “Biogenic Magnets”, Magnetism: Molecules to Materials IV, ed. Miller, J. S. and Drillon, M. (Wiley-Vch, 2003), pp. 205231.10.1002/9783527620548.ch6cGoogle Scholar
10 Bazylinski, D. A. and Frankel, R. B., Nature Reviews 2, 217230 (2004).Google Scholar
11 Faivre, D. and Schüler, D., Chem. Rev. 108, 48754898 (2008).10.1021/cr078258wGoogle Scholar
12 Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., and Matsunaga, T., J. R. Soc. Interface 5, 977999 (2008).10.1098/rsif.2008.0170Google Scholar
13 Lefèvre, C., Bernadac, A., Pradel, N., Wu, L.-F., Yu-Zhang, K., Xiao, T., Yonnet, J. P., Lebouc, A., Song, T., and Fukumori, Y., J. Ocean University of China 6(4), 355359 (2007).10.1007/s11802-007-0355-4Google Scholar
14 Devouard, B., Pósfai, M., Hua, X., Bazylinski, D. A. , Frankel, R. B., and Buseck, P. R., American Mineralogist 83, 13871398 (1998).10.2138/am-1998-11-1228Google Scholar
15 Lefèvre, C. T., Bernadac, A., Yu-Zhang, K., Pradel, N., and Wu, L.-F., Environmental Microbiology, in press (2009).Google Scholar
16 Pan, H.-M., Zhu, K.-L., Song, T., Yu-Zhang, K., Lefèvre, C., Xing, S., Liu, M., Zhao, S., Xiao, T., and Wu, L.-F., Environmental Microbiology 10(5), 11581164 (2008).10.1111/j.1462-2920.2007.01532.xGoogle Scholar
17 Butler, R. F. and Banerjee, S. K., J. Geophysical Research 80, 40494058 (1975).10.1029/JB080i029p04049Google Scholar
18 Zhang, C.-L., Vali, H., Romanek, C. S., Phelps, T. J., and Liu, S. V., American Mineralogist 83, 14091418 (1998).10.2138/am-1998-11-1230Google Scholar
19 Frankel, R. B., Annu. Rev. Biophys. Bioengng 13, 85 (1984).10.1146/annurev.bb.13.060184.000505Google Scholar
20 Frankel, R. B. and Bazylinski, D. A., Trends in Microbiology 14, 329331 (2006).10.1016/j.tim.2006.06.004Google Scholar
21 Balkwill, D. and Blakemore, R. P., J. Bacteriol. 141, 13991408 (1980).Google Scholar
22 Komeili, A., Li, Z., Newman, D. K., and Jensen, G. J., Science 311, 242245 (2006).10.1126/science.1123231Google Scholar
23 Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J. M., and Schüler, D., Nature, 440, 110114 (2006).10.1038/nature04382Google Scholar
24 Komeili, A., Annu. Rev. Biochem. 76, 351366 (2007).10.1146/annurev.biochem.74.082803.133444Google Scholar
25 Sarikaya, M., Proc. Natl. Acad. Sci. USA 96, 1418314185 (1999).10.1073/pnas.96.25.14183Google Scholar
26 Baeuerlein, E. J., Schüler, D., Reszka, R., and Päuser, S., In PCT/DE 98/00668 (1998).Google Scholar
27 Matsunaga, T., Suzuki, T., Tanaka, M., and Arakaki, A., Trends Biotechnol. 28, 182 (2007).10.1016/j.tibtech.2007.02.002Google Scholar
28 Ma, M., Zhang, Y., Yu, W., Shen, H.-Y., Zhang, H.-Q., and Gu, N., Colloids and Surfaces A 212, 219226 (2002).10.1016/S0927-7757(02)00305-9Google Scholar
29 Bahaj, A. S., Croudace, I. W., and James, P. A. B., IEEE Transactions on Magnetics 30, 47074709 (1994).10.1109/20.334196Google Scholar
30 Bahaj, A. S., Croudace, I. W., James, P. A. B., Moeschler, F. D., and Warwick, P. E., J. Inorg. Biochem. 59, 107 (1998).Google Scholar
31. Chang, S.-B. R. and Kirschvink, J. L., Ann. Rev. Earth Planet. Sci. 17, 169 (1989).10.1146/annurev.ea.17.050189.001125Google Scholar
32 Petersen, N., Dobeneck, T. Von, and Vali, H., Nature 320, 611 (1986).10.1038/320611a0Google Scholar
33 Thomas-Keprta, K. L., Chemett, S. J., Bazylinski, D. A., Kirschrink, J. L., McKay, D. S., Vali, H., Gibson, E. K. Jr, and Romanek, C. S., Proc. Natl. Acad. Sci. USA 98, 21642169 (2001).10.1073/pnas.051500898Google Scholar
34 Mann, S., Biomineralisation: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press (2001).Google Scholar
35 Fortin, D., Glasauer, S., and Langley, R.S., Biomineralisation: From Nature to Application, vol. 4 of Metal Ions in Life Sciences, ed. Sigel, A., Sigel, H., Sigel, R. K. O. (Jihn Wiley & Sons), in press.Google Scholar
36 Cornell, R. M. and Schertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, VCH, New York (1996).Google Scholar
37 Staniland, S., Ward, B., Harrison, A., Laan, G. van der, and Telling, N., Proc. Natl. Acad. Sci. 104 (49), 1952419528 (2007).10.1073/pnas.0704879104Google Scholar
38 Bazylinski, D. A., Frankel, R. B., Heywood, B. R., Mann, S., King, J. W., Donaghay, P. L., and Hanson, A. K., Appl. Environ. Microbiol. 61, 3232 (1995).Google Scholar
39 Bazylinski, D. A., Heywood, B. R., Mann, S., and Frankel, R. B., Nature 366, 218 (1993).10.1038/366218a0Google Scholar
40 Keim, C. N. and Farina, M., Geomicrobiol. J. 22, 55 (2005).10.1080/01490450590922550Google Scholar
41 Isambert, A., Menguy, N., Larquet, E., Guyot, F., and Valet, J.-P., Am. Mineral. 92, 621 (2007).10.2138/am.2007.2278Google Scholar
42 Meldrum, F. C., Mann, S., Heywood, B. R., Frankel, R. B., and Bazylinski, D. A., Proc. R. Soc. Lond. B 251, 231-236 & 237242 (1993).Google Scholar