Published online by Cambridge University Press: 31 January 2011
We have investigated the effect of 3d-transition metal Fe (Iron) doping at Mn site of nanometric polycrystalline La0.7Sr0.3MnO3 (i.e. La0.7Sr0.3Mn1-xFexO3; 0 ≤ x ≤ 0.1) CMR manganites on magneto-transport and magnetic properties. Nanocrystalline Fe doped La0.7Sr0.3MnO3 powders were synthesized through chemical route “Pyrophoric Reaction Process” and calcinated at 850°C for 5 hrs. X-ray diffraction (XRD) patterns of synthesized powder indicate that all samples are having perovskite structure without any secondary impurity phase. Average crystallite size was found to be 20 nm using Debye Scherer formula. Transmission electron micrographs (TEM) show that the average particle sizes are in nanometric regime (φ ˜ 50 nm) and samples are polycrystalline in nature which was observed through selected area electron diffraction (SEAD) patterns. The effect of Fe doping at Mn site of La0.7Sr0.3MnO3 was found to change substantially the magnetic and transport properties without modifying lattice structure. The suppression of magnetic and transport properties were observed due to dilution of double exchange mechanism in Mn3+- O2--Mn4+ network in La0.7Sr0.3MnO3.