No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Adhesion of differentiated mammalian cells from various hard and soft tissues, including adult mesenchymal stem cells is different on nanophase than on microphase/conventional ceramics (such as alumina, titania and hydroxylapatite) as well as on composites of these ceramics with either poly(L-lactic) acid or poly(methyl) methacrylate. Most importantly, nanophase materials promote selective interactions, for example, of osteoblasts but not of fibroblasts. The type, amount and conformation of adsorbed proteins (such as fibronectin, collagen and vitronectin) are key aspects of the underlying mechanism(s) of subsequent cell interactions with nanophase materials. These cellular/molecular results provide evidence that nanophase biomaterials have the potential for improving the efficacy of implants and for promoting neotissue formation pertinent to tissue engineering, regenerative medicine and other clinical applications.