Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:16:01.498Z Has data issue: false hasContentIssue false

Mass Transfer in a Geologic Environment

Published online by Cambridge University Press:  26 February 2011

S. J. Zavoshy
Affiliation:
Department of Nuclear Engineering University of California Berkeley, California 94720
P. L. Chambre'
Affiliation:
Department of Nuclear Engineering University of California Berkeley, California 94720
T. H. Pigford
Affiliation:
Department of Nuclear Engineering University of California Berkeley, California 94720
Get access

Abstract

A new analytical solution is presented that predicts the rate of dissolution of species from a waste package surrounded by a wet porous medium. By equating the rate of diffusive mass transfer into the porous rock to the rate of liquid-surface chemical reaction, an analytical solution for the timedependent dissolution rate and the time-dependent concentration of dissolved species at the waste surface is obtained. From these results it is shown that for most of the important species in a package of radioactive waste the surface liquid quickly reaches near-saturation concentrations and the dissolution rate can be predicted by the simpler theory that assumes saturation concentrations in the surface liquid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chambre', P. L., Pigford, T.H., Zavoshy, S.J., “Solubility-Limited Dissolution Rate in Groundwater”, Trans. Amer. Nucl. Soc., 40, 153 (1982)Google Scholar
2. Chambre', P. L., Zavoshy, S.J., Pigford, T. H., “Solubility-Limited Fractional Dissolution Rate of Vitrified Waste in Groundwater”, Trans. Amer. Nucl. Soc., 43, 111, (1982)Google Scholar
3. Chamnre', P. L., Pigford, T.H., Sato, Y., Fujita, A., Lung, H., Zavoshy, S.J., Kobayashi, R., “Analytical Performance Models”, LBL-14842 (1982)Google Scholar
4. Chambre', P. L., Pigford, T.H., “Prediction of Waste Performance in a Geologic Repository”, Proceedings of Materials Research Society, The Scientific Basis for Nuclear Waste Management, Boston (1983)Google Scholar
5. Wicks, G.G., and Wallace, R.M., “Leachability of Waste Glass Systems– Physical and Mathematical Models”, DP-MS-82−18.E. I.du Pont de Nemours and Co., Savannah River Plant, Aiken, S.C.(1982).Google Scholar
6. Plodinec, M.J., Wicks, G.G., and Bibler, N.E., “An Assessment of Savannah River Borosilicate Glass in the Repository Environment”, DP-1629. E. I.du Pont de Nemours and Co., Savannah River Plant, Aiken, S.C. (1982).Google Scholar
7. Macedo, P.B., Barkatt, A., Montrose, C.J., “Phenomenological Models of Nuclear Waste Glass Leaching”, Chapter 6 in “Final Report of the Defense High-Level Waste Leaching Mechanisms Program”, J. E. Mendel (Compiler), PNL-5157 (August 1984).Google Scholar
8. O'Connor, T.L., Greenberg, S.A., “The Kinetics for the Solution of Silica in Aqueous Solutions”, J. Phys. Chem., 62, 11951198 (1958)Google Scholar
9. van Lier, J.A., Bruyn, P. L.De, Overbeek, J. Th.G., “The Solubility of Quartz”, J. Phys. Chem., 64, 16751682 (1960)Google Scholar
10. Wirth, G.S., Gieskes, J.M., “The Initial Kinetics of Dissolution of Vitreous Silica in Aqueous Media”, J. of Colloid and Interface Science, 68, 492500 (1979).Google Scholar
11. Angard, P., Helgeson, H.C., “Thermodynamic and Kinetic Constraints on Reaction Rates Among Minerals and Aqueous Solutions I. Theoretical Considerations”, Amer. J.of Science, 282, 237285 (1982).Google Scholar
12. Pederson, L.R., Buckwalter, C.Q., McVay, G.L., “The Effects of Surface Area to Solution Volume on Waste Glass Leaching”, Nucl. Tech., 62, 151 (August 1983).Google Scholar
13. Strachan, D. M., “Results From Long-Term use of MCC-1 Static Leach Test”, Nuclear and Chemical Waste Management, 4, 177188 (1983).CrossRefGoogle Scholar
14. Chick, L.A., Turcotte, R. P., “Glass Leaching Performance”, PNL 4576. Pacific Northwest Laboratory, Richland, Washington (December 1982).Google Scholar
15. Chambre', P.L. to be publishedGoogle Scholar
16. Jander, G., Jahr, K. F., Kolloid-Beihefte, 41, 48 (1934).Google Scholar
17. H., Pigford, T., Chambre', P. L., Zavoshy, S. J., “Effect of Repository Heating on Dissolution of Glass Waste”, Trans. Amer. Nucl. Soc., 44, 115 (1983).Google Scholar
18. Battelle Pacific Northwest Laboratory, “Data Submitted for Nuclear Waste Materials Handbook”, PNL-3990, Richland, Washington (1984).Google Scholar
19. Pigford, T.H., Blomeke, J. O., Brekke, T. L., Cowan, G. A., Falconer, W. E., Grant, N. J., Johnson, J. R., Matusek, J. M., Parizek, R. P., Pigford, R. L., White, D. E., “A Study of the Isolation System for Geologic Disposal of Radioactive Wastes”, National Academy Press, Washington, D. C. (April 1983).Google Scholar
20. Bradley, D.J., Harvey, C. O., Turcotte, R. P., “Leaching of Actinides and Technetium from Simulated High-Level Waste Glass”, PNL-3152, Pacific Northwest Laboratory, Richland, Washington (August 1979).Google Scholar
21. Peters, R.D., Diamond, H., “Actinide Leaching from Waste Glass: Air-Equilibrated Versus Deaerated Conditions”, PNL-3971, Pacific Northwest Laboratory, Richland, Washington (October 1981).CrossRefGoogle Scholar
22. Seidell, A., “Solubilities of Inorganic and Metal-Organic Compounds”, 4th ed., Vol.2. American Chemical Society, Washington, D.C. (1965).Google Scholar
23. Wood, B.J., Walther, J. W., “Rates of Hydrothermal Reactions”, Science, 222, 413, 28 October 1982).Google Scholar
24. Berner, R.A., “Rate Control of Mineral Dissolution Under Earth Surface Conditions”, Am. J. Sci. 278:12351252 (1978).CrossRefGoogle Scholar
25. Skagius, K., and Neretnieks, I., “Diffusion in Crystalline Rocks”, pp. 181182 in Scientific Basis for Nuclear Waste Management, Lutze, V. W., ed. Proceedings of the Materials Research Society Fifth International Symposium. New York: Elsevier Science (1982).Google Scholar
26. Bradbury, M.H., Lever, D., and Kinsey, D., “Aqueous Phase Diffusion in Crystalline Rock”, pp. 569578 in Scientific Basis for Nuclear Waste Management, Lutze, V. W., ed. Proceedings of the Materials Research Society Fifth International Symposium. New York: Elsevier Science (1982).Google Scholar